
CS 4/53201 Operating Systems
Project #1

Due via e-mail by 11:59pm on Tuesday, March 4, 2003

Objective
This project should be done individually. In this project you will read the Nachos source code and answer
questions about it. You will also modify Nachos code to implement the programming assignment. The
project is worth the total of 50 points.

Getting Started
First, you have to install and compile Nachos. See the instructions on the course’s webpage. After
successful compilation of Nachos, run the executable to make sure it produces the expected results.

Reading Nachos Source Code
It is suggested that you read the files in the order described below. As you do so, read the corresponding
sections in Thomas Narten’s “A Road Map Through Nachos” and Archna Kalr An Operating
Systems Tutorial”. The links to both of these documents are available from the course’s webpage.
First, read the code for Nachos operating system. It is located in subdirectory threads. When you
compiled Nachos the Makefile turned THREADS directive on (there are several pointers to makefile
tutorials on the webpage for the course). Notice what portions of code in the files below were included due
to this directive. Note also that other Nachos features like USER_PROGRAM, FILESYS, and NETWORK
were turned off. Notice what command line arguments you can give to Nachos and what global data
structures are created. Start reading the code by going through the following files

• threads/main.cc, threads/threadtest.cc – main function and simple test of thread
routines;

• threads/system.h, threads/system.cc – Nachos startup/shutdown routines;

Read through the following files to see how Nachos implements and schedules threads. Study the
Scheduler and Thread classes:

• threads/thread.h, threads/thread.cc – thread data structures and thread operations
such as fork(), yield(), sleep(), and finish();

• threads/scheduler.h, threads/scheduler.cc – manages the list of threads that are
ready to run;

• threads/switch.h, threads/switch.s – assembly language routines for creating, and
deleting threads and context switch. Skim through these files. You are not expected to understand the
details.

• threads/list.h, threads./list.cc – generic list management
• threads/utility.h, threads/utility.cc – some useful definitions and debugging

routines.

After reviewing Nachos OS part, look at the Nachos simulated machine. The code for the machine is
located in machine directory. Concentrate on the files listed below:

• machine/machine.h, machine/machine.cc – emulates the part of the machine that
executes user programs: main memroy, processsor regiester, etc.;

• machine/mipssim.cc – emulates the integer instruction set of a MIPS R2/3000 CPU.
• machine/interrupt.h, machine/interrupt.cc – manage enabling and disabling

interrupts as part of the machine emulation;
• machine/timer.h, machine/timer.cc – emulate a clock that periodically causes an

interrupt to occur;

• machine/stats.h – collect execution statistics.

Debugging Nachos Source Code
There are three main ways to study and debug your Nachos program:

• using Nachos DEBUG/ASSERT function: the function itself is specified in
threads/utility.h. The output produced by this routine is controlled by the command line
options given to nachos at run-time. These options are described in threads/main.cc and
threads/system.cc. The debugging option is “–d“; Run “nachos –d t” to see what your
code is doing. You can add your own DEBUG calls and your own options

• using printf: you can use printf statements to output the values the variables assume at
different times of program execution. Caveat: the output is not displayed immediately, it is. Use
fflush() to force immediate printing;

• using gdb: gdb is a general purpose source level debugger. Using it is a comprehensive way of
debugging your Nachos programs. Check the course’s webpage for reference materials on gdb. You
should try using gdb before asking the TA or the instructor for help with your code.

Getting Help

Help is available from the instructor (Mikhail Nesterenko) and the TA (Meiduo Wu). The easiest way to
reach us is through e-mail. Both of us have our office hours listed on the course’s webpage. If you need a
consultation outside office hours please make an appointment. The office hours may be extended as the
project deadline approaches:

• for clarifications on the assignment itself contact the instructor;
• with questions on Nachos contact either the instructor or the TA;
• for help with your code or debugging, contact the TA.

Cooperation vs. Cheating
See the class syllabus. Contact the instructor if you have any questions. For this project, you are allowed to
study the Nachos source code with your friends, buy you have to work on the problems and the
programming assignment individually.

Problems
These questions concern Nachos OS:

1) What module (file) and what function is function ThreadTest started from?

2) What does the following statement do?

 t->fork(procedure, parameter);

What are the parameters to fork and how are they used?

2) What does the following statement declare?

Thread *t = new Thread(“string”);

What is string used for?

3) What does the following statement do?

DEBUG('t', "Entering SimpleTest");

How are the two parameters for DEBUG used?

4) What does yield() do? What happens if yield() is executed and there is no other thread to run?

5) When does a thread execute Finish()? Can a thread execute return() instead? Can it execute
exit() instead?

6) What does scheduler::ReadyToRun() do?

7) What does scheduler::Run() do and how is it different from scheduler::ReadyToRun()?

8) What data structure is defined in list.h and list.cc and how is it used in scheduler?

9) What module and what portion actually removes data structures of a finished thread and why the
thread itself cannot do the cleanup?

10) What module keeps track of time used by nachos programs? Why cannot standard Unix time be used
for this purpose?

Programming Assignment
All changes you make to Nachos source code must be clearly marked as follows:

//project 1 changes start here
<put your changes here>
//project 1 changes end here

Modify Nachos main() function so that it accepts a new option “-a”. This option can be followed by a
phrase of unspecified length. For example, the nachos executable can be run as:

prompt% nachos –a Object Oriented Programming at Kent-State

Modify a function Threadtest so that it creates two threads (vow and cons). The threads should take
turns printing the respective words of the phrase supplied on the command line. The vow thread should
print all the words that start with a vowel and the cons thread should print all words starting with a
consonant. Note that the ThreadTest should not print anything itself – the output should be supplied by
the threads it creates. Note that the order of the words in the phrase should not be changed in the printout.
Your program should work for a phrase of any reasonable length not just the one given in the example. The
output of your program should look similar to the following.

prompt% nachos -a Object Oriented Programming at Kent-State
Entering main
vow: Object
vow: Oriented
cons: Programming
vow: at
cons: Kent-State
No threads ready or runnable, and no pending interrupts.
Assuming the program completed.
Machine halting!
[…]
Cleaning up...
prompt%
Hint: declare a globally accessible list of stings, store the command line arguments there and use list
handling routines specified in threads/list.h, threads/list.cc to manipulate your list.

Submitting Your Project
You have to submit your project to the teaching assistant (Meiduo Wu mwu@mcs.kent.edu) by e-
mail. She will acknowledge the receipt of your project within a day. Send only the files you modified – for
example thread.cc and thread.h. Include the plainte-text file with your answers. Your submission
should be in the form of a tar archive. The command to create the archive file (named project1.tar
containing files thread.cc, thread.h and answers.txt) is as follows:

 tar cvf project1.tar thread.cc thread.h answers.txt

Grading
Each question is worth 2 points. Thus, the programming assignment is worth 30 points. At least 2/3 of the
grade for the programming assignment is given if the program works correctly. If the program does not
work you may still submit it and explain the reasons what is wrong with the program and why you think it
does not work. Put your explanation in answers.txt. Partial credit may be assigned. Late projects are
accepted. See syllabus for late policies.

Disk Space Usage
Nachos with compiled binaries may take over 4 Meg of disk space. Note that the usual quota for
undergraduates on the departmental network is 10 Meg. If you exceed your disk quota you will not be able
to login to your account. Seek help of the system administrators if you have quota problems. You can check
your disk quota usage with the following command:

prompt% quota –v

