
1

On previous lecture

n Distributed system - is a collection of independent machines
(loosely coupled hardware) that appears to the user to be a
single system (tightly coupled software)

n distributed system is provides - a cheap, scalable, powerful
and reliable alternative to single and multiprocessor
computers (tightly coupled hardware)

n cluster is a type of distributed system - it is a small scale
homogeneous collection of machine that performs a small
set of well-defined tasks as a single entity

2

Lecture 21: Distributed File
Systems

n Network File System (NFS)
u v2
u v3

n Andrew File System (AFS)
u the original
u DCE Distributed File System (DCE DFS)

3

What is distributed file system

n Distributed file
system is a part of
distributed system
that provides a user
with a unified view
of the files on the
network.

server
disk

network

cachecache local
diskcache

cache cache

server
disk

server
disk

clients

servers

A machine that holds the shared files is called a server, a machine that
accesses the files is called a client. 4

Design goals for a distributed file
system

n network transparency – clients should be able to access remote files
using the same operations that apply to local files.

n location transparency – the name of the file should not reveal its
location in the network.

n user mobility – users should be able to access shared files from any
node in the network.

n fault tolerance – the system should continue to function after failure of a
single component (a server or a network segment). It may, however,
degrade in performance or make part of the file system unavailable.

n scalability – the system should scale well as its load increases. Also, it
should be possible to grow the system incrementally by adding
components.

n file mobility – it should be possible to move the files from one physical
location to another in a running system.

5

Distributed file system design
considerations

n stateful or stateless operation
u stateful server retains information about the client operations

between requests and uses this state information to service
subsequent requests. Requests such as open or seek are inherently
stateful - ether client or server has to remember the state
information. Stateless server requests - are self-contained - no
information needs to be kept in between.

u stateful server is faster (it can take advantage of the knowledge of
client’s state to eliminate network traffic); stateless servers can
recover from failures easier.

n semantics of sharing
u Unix semantics - the changes made by one client to a file are

immediately visible to other clients accessing this file
u session semantics - changes are propagated to other clients when

the file is either opened or closed.

6

Client-server model
n A client-server model is a programming paradigm where the

computing task is split between two entities:
u server - a passive entity that responds only when client

requests a certain service to be done
u client - an active entity, requests server to perform certain

cervice
n Client-server computing model is simple, scalable, and reliable
n In case of distributed file systems:

u a machine that holds the shared files is called a server
u a machine that accesses the files is called a client.

7

Remote Procedure Calls (from
previous lectures)

n The server stub uses the message to generate a local
procedure call to the server

n If the local procedure call returns a value, the server stub builds
a message and sends it to the client stub, which receives it and
returns the result(s) to the client

client

call

return

server

call

return

kernelkernel

network

client
stub

pack
parameters

unpack
results

unpack
parameters

pack
results

server
stub

Each RPC
invocation by a
client process calls
a client stub, which
builds a message
and sends it to a
server stub

8

Network File System (NFS) v2

n developed by Sun Microsystems in 1985, now supported by
most Unix and some non-Unix systems.

n NFS is a protocol by which machines share files
n NFS is stateless - no requests to open and close a file.

Read/write operations (unlike Unix read and write) pass the
offset of the file as a parameter

n simple crash recovery - no persistent information about the client is
maintained on server - in client crashes the server is not affected;
if server crashes - the client keeps repeating the request until it is
satisfied (the server is back online)

n problem with statlessness - the writes have to be committed to
stable storage before reporting successful completion of the
write. Why? This includes inodes as well as data blocks of a file

n client and server communicate via synchronous RPCs

9

Network File System (NFS) v2 (cont.)

n Virtual file system - abstracts the functions of a file system from it’s
implementation, can be implemented over various FS

local
disk

UNIX
file

system
NFS
client

local remote

UNIX kernel

user-level
client process

system calls

client computer

UNIX
file

system
NFS

server

UNIX kernel

server computer

network

NFS
protocol

virtual file system virtual file system

local
disk

10

NFS v2 performance improvements, v3
n Client-side caching:

u every NFS operation requires network access - slow. client can cache
the data it currently works on to speed up access to it.

u problem - multiple clients access the data - multiple copies of cached
data may become inconsistent.

u solutions - cache only read-only files; cache files where inconsistency is
not vital (inodes) and check consistently frequently

n deferral of writes
u client side - the clients bunch writes together (if possible) before

sending them to server (if the client crushes - it knows where to restart)
u a sever must commit the writes to stable storage before reporting

them to a client. Battery backed non-volatile memory (NVRAM) is used
(rather than the disk). NVRAM -> disk transfers are optimized for disk
head movements and written to disk later.

n v3 allows delayed writes by introducing commit operation - all writes are
“volatile” until the server processes commit operation.

n Requires changes in semantics - applications programmer cannot assume
that all the writes are done and should explicitly issue commit .

11

NFS
network
appliances
(dedicated
NFS
servers)

n Auspex NS500
n NW and FS run

functional multi-
processing
kernel (FMK) - a
“stripped down” version of Unix (no shared memory, processes never
terminate) which allows NW and FS to context switch fast and service
requests quickly. NW receives a request - if its NFS it passes it to FS if
not a processor running regular Unix (SunOS) services it.

12

Andrew File System (AFS)
n developed in Carnegie-Mellon University in 1982
n AFS was made to span large campuses and scale well therefore

the emphasis was placed on offloading the work to the clients
n as much as possible data is cached on clients, uses session

semantics - cache consistency operations are done when file is
opened or closed

n AFS is stateful, when a client reads a file from a server it holds a
callback, the server keeps track of callbacks and when one of the
clients closes the file (and synchronizes it’s cached copy) and
updates it, the server notifies all the callback holders of the change
breaking the callback, callbacks can be also broken to conserve
storage at server

n problems with AFS:
u even if the data is in local cache – if the client performs a write a

complex protocol of local callback verification with the server
must be used; cache consistency preservation leads to
deadlocks

u in a stateful model, it is harder to deal with crushes.

13

Caching in Andrew

n When a remote file is accessed, the server sends the entire file to
the client
u The entire file is then stored in a disk cache on the client

computer
F Cache is big enough to store several hundred files

n Implements session semantics
u Files are cached when opened
u Modified files are flushed to the server when they are closed
u Writes may not be immediately visible to other processes

n When client caches a file, server records that fact — it has a
callback on the file
u When a client modifies and closes a file, other clients lose their

callback, and are notified by server that their copy is invalid

14

How can Andrew perform well?

n Most file accesses are to files that are infrequently updated, or are
accessed by only a single user, so the cached copy will remain
valid for a long time

n Local cache can be big — maybe 100 MB — which is probably
sufficient for one user’s working set of files

n Typical UNIX workloads:
u Files are small, most are less than 10kB
u Read operations are 6 times more common than write

operations
u Sequential access is common, while random access is rare
u Most files are read and written by only one user; if a file

shared, usually only one user modifies it
u Files are referenced in bursts

15

DCE Distributed File
System (DCE DFS)

n Modification of AFS by Open Software Foundation for its
Distributed Computing Environment (DCE)

n one of the major modifications - cache consistency
mechanism is streamlined by using tokens. Each file
contains a tokens for,
u data, status, lock, etc.

n a client can “check out” a token from a server for a
particular file. Only if a client holds a lock token the client is
allowed to modify the file; if a client holds status token it is
allowed to modify status of the file

n tokens provide finer degree of control than callbacks of AFS

16

AFS vs. NFS
n NFS is simpler to implement, AFS is cumbersome

due to cache consistency synchronization
mechanisms, etc

n NFS does not scale well - it is usually limited to a
LAN, AFS scales well - it may span the Internet

n NFS performs better than AFS under light to
medium load. AFS does better under heavy load

n NFS does writes faster.

