
1

Lecture 19: Unix signals
and Terminal management

n what is a signal
n signal handling

u kernel
u user

n signal generation
n signal example usage
n terminal management

2

What is signal

n signal is a mechanism of primitive communication, synchronization
and notification

n two phases:
u generation - when event occurs that requires the process to be

notified of it
u delivery (handling) - the process recognized the arrival of even

and takes appropriate action
F asynchronous - example: user sends an interrupt signal by

pressing ctrl-C
F synchronous - example: accessing illegal address

n between generation and delivery - signal is pending
n Type is associated with signal. It is an integer. It is different on

different Unix flavors. Usually symbolic constants rather than
integers are used to denote signals. Example: SIGHUP

3

Signal handling
n A program can specify how to handle a certain signal by specifying

(installing) signal handler - a function that is called when signal is
delivered

n default actions - if no specification is given:
u abort - process terminates after dumping core
u exit - process terminates, no coredump
u ignore - ignores signal
u stop - suspends process
u continue - resumes process if suspended, otherwise - ignore

n the signal delivery (and default handling) is done by kernel
u when there is a signal to be delivered - the kernel checks is process

specified a handler for this type of signal
F if yes - calls handler
F if not - takes one of the default actions

n note that the process needs to be running to receive signals
n kernel delivers signals on the following three occasions:

u before returning to user mode from a system call or interrupt
u just before blocking on interruptible event
u immediately after waking up from interruptible event

4

User program signal handling
n A program may elect to let the kernel handle the signal, install it’s

own signal handler or have it blocked (ignored)
n installing SIGINT handler

void sigint_handler (int sig){
… /* handles signal */

}
main(){

/* installs handler */
signal (SIGINT, sigint_handler);
…

}
n handler is executed “out of sequence”
n before switch to user mode kernel transfers control to signal handler
n and makes arrangements to return to previous point of execution
n how can we do this?

normal code executes

signal delivered

signal handler runs

resume normal execution

5

Signal generation

n Kernel generates signals to a process on various events.
n Some classes of events:

u exceptions - attempt to execute illegal instruction, access memory
out of range, division by zero, etc.

u other processes - may send signals
u terminal interrupts - certain keyboard characters generate signals

(Ctrl-C)
u notification - a process may request to be notified of certain event

like device being ready for I/O

6

Signal example usage

n Asynchronous:
u a user presses ctrl-C which generates keyboard interrupt
u the interrupt is handled by terminal driver which generates SIGINT

for the “foreground” process
u when this process is scheduled to run, before it switches to user

mode the kernel checks if the process installed signal handler
F if yes - kernel makes the signal handler the first function to run

in the user mode
F if no - the kernel terminates the process

n Synchronous:
u division by zero occurs - trap switches to kernel mode
u trap handler recognizes the exception and either sends the signal

to installed signal handler or aborts the process

7

Terminal management
n process group

u each process has a process group identified by process group ID
u process group is different from user group
u each group has a leader; group ID is process ID of the leader.

Leader - process whose group ID is its process ID
u when process is created it inherits group from parent
u can leave group by executing a system call and becoming a new

group leader
n controlling terminal

u process may have controlling terminal - usually the terminal at which
process was created

u all processes of the same group share controlling terminal
u process accepts input and sends output to controlling terminal

n /dev/tty
u a special file which is the controlling terminal for each process
u the terminal driver routes the requests to appropriate terminal

n controlling group - receives keyboard-generated signals (SIGINT ...) 8

Terminal management (cont.)

n When login shell execs a program at users request this process
inherits a the shell’s group ID

n this a user process usually
u belongs to a controlling group of the terminal it was

launched from - receives keyboard generated signals
u has this terminal as its controlling terminal - receives

keyboard input, outputs to terminal
n if a process executes the command to reset its process group it

loses the controlling terminal and leaves controlling group
becoming a daemon process

