Lecture 18: RAID

- I/O bottleneck
- JBOD and SLED
- striping and mirroring
- "classic" RAID levels: 1 5
- additional RAID levels:
- 6, 0+1, 10
- RAID usage

Impending I/O crisis

- CPU speed is growing exponentially
- · Memory size is growing exponentially
- I/0 performance is increasing only slowly
- computer systems will become I/O dominated
- Amdahl law the system is only as fast as it's slowest component

Can we get more disks?

- . Can we get more disks and access them in parallel disk array?
- Advantage: disk access speeds up
- problem: mean time between failures MTBF decreases! MTBF(disk array) = MTBF(disk) / # of disks
- idea controlled redundancy of the information in disk array improves the MTBF as well as keeping disk access fast:
 - RAID Redundant Array of Inexpensive Disks
 - ◆ JOBD Just a Bunch of Disks
 - ◆ SLED Single Large Expensive Drive

RAID uses striping and mirroring

- Disks are divided into independent reliability groups
- Striping information is written in stripes, each stripe spans multiple drives.
 - Can be

1

3

5

- bit interleaving - every bit belongs to a different portion of the logical "volume"

2

6

- sector interleaving every sector belongs to a different portion of the logical volume
- advantage: reads and writes can be done in parallel
- · disadvantage: one disk fails the information is lost
- mirroring information is copied into two different disks
 - advantage: reads can be done in parallel, fault-tolerant disadvantage: have to get 2X disks
- · depending on the combination of the two techniques RAID is classified into 5 levels

RAID levels 0, 1 and 2

- 0 bit-interleaving striping
 - ok performance
 - Iow MTBF
- 1 mirroring only
 - excellent reliability
 - high cost (must purchase 2X disks) -50% overhead
 - reads are slightly better (can read from either copy)
 - · have to do two writes, can't proceed until they complete
- . 2 use striping (with bit interleaving) and error correction
 - code (ECC)
 - + hamming ECC ensures that the error can be corrected, 20-40% overhead
 - reliable

 - performance is bad for small I/0 have to read the whole stripe
 - can't do I/O in parallel

RAID levels 3 and 4

- disk controllers can recognize if the disk has failed!
- 3
 - only one parity disk per reliability group (4-10% overhead) bit interleaving
 - reliability and performance is slightly better than 2 since we use fewer disks
- . 4
 - use sector interleaving
 - large writes can go in parallel
 - independent / large reads can go in parallel
 - problem: parity disk is a bottleneck!

Comparison of RAID levels 2, 3 and 4

Raid level 6

	A Blocks	B Blocks	C Blocks	D Blocks
	AO	BO	CO	O parity
Parity Generation	A1	B1	1 parity	A parity
	A2	2 parity	B parity	D1
	3 parity	C parity	C1	D2
	D parity	B2	(2	D3

- two independent sets of parities (2-dimentional parity) • one - similar to RAID 5
 - two across all disks for fault tolerance
 - eval
 - can sustain 2 simultaneous disk crashes
 - second parity slows down writes, needs extra disk, expensive electronics to calculate parity

RAID level 5

• 5 - stripe and parity across all disks - no singe disk is a bottleneck

	4 Data	Disks		Check Disk	5 D	isks (conta	ining Do	ıta and	Checks)
	2	3	4	5 5		2	3	4	5
s0				Ø	s0				8
s1		Ų		8	s1			8	
s2 🗌		D		8	s2		8		
s3 🗌				8	s3 🗌	8			
s4 🗌				8	s4				
s5 🗌				8	s5				8
				· ···		• …			。

RAID Levels 0+1 and 10

- 0+1 stripe then mirror ♦ fault tolerance – can withstand single failure
 - performance as
 - good as mirroring and striping
- 10 mirror than stripe
 - better fault tolerance than 0+1 (why?)
 - RAID 10
- expensive since 2X disks are needed

- same performance as 0+1
- both techniques are

RAID applications

- . Hot spare is maintained if a "working" disk fails then the information is rewritten to hot spare
- RAID can be implemented in hardware or software
 - software RAID OS calculates checksums and does writes to raids,
 - does not need special hardware

 - not very fault-tolerant OS crashes RAID may go with it
 - hardware RAID there is a separate CPU on the RAID; RAID's CPU talks to the disks, calculates checksums and supplies the computer with "ready" data

 - expensive?
- Most hardware RAIDs have "on-board" RAM to use as cache

11

9