
1

Lecture 20: I/O

n I/O hardware
n I/O structure
n communication with controllers
n device interrupts
n device drivers
n streams

2

I/O hardware

n bus - a set of wires
and a protocol that
defines the messages
that can be set over
the wires

n controller - a collection
of electronics that
can operate a device
(a port, a bus, a hard
disk)

n if controller is complex
it can be implemented as a separate circuit board called adapter

n note that the controllers are located on both “sides” of the bus:
device controller - bus - host controller

3

(Unix) I/O
Structure

n To decrease complexity
of I/O design Unix I/O
management is layered

n user applications
communicate with
peripheral devices via
the kernel through
system calls

n I/O subsystem handles
the I/O requests and
uses the device driver interface to communicate with the devices

n device driver is an independent part of the kernel that contains a
collection of data structures and functions that controls one or more
devices and interacts with the kernel through a well defined interface

4

Communication with controllers
n Controller has a set of control and status registers (CSR)
n CSRs are device-dependent
n driver writes to CSRs to issue commands and reads them to obtain

completion status and error information
n two ways of I/O space configuration:

u separate I/O space - separate (CPU) instructions are needed to
move data to and from controllers

u memory-mapped device I/O - CSRs are assigned regular memory
addresses and data in CSRs can be manipulated by regular memory
operations (like store and load); examples - video memory in PCs

n two ways of transferring data between kernel and device:
u programmed I/O (PIO) - data has to be written to the device byte by

byte. Whenever the device is ready for the next byte it issues an
interrupt; examples - printers, modems, mice, keyboards

u direct memory access (DMA) – CPU just gives the description of the
data to be transferred (location, size, etc.) and the DMA controller
does the rest communicating with memory independently of CPU
F variant - direct virtual memory access (DVMA) – controller copies

data between two memory-mapped devices

5

Polling and device interrupts
n The kernel communicates with devices by:

u polling - CPU regularly polls CSRs of a device to check if the I/O
operation has completed

u interrupts - a device raises an interrupt to alert the CPU that I/O
operation has completed

n interrupt handler - a short self-contained routine that responds to an
interrupt

n interrupts can be:
u polled - there is one interrupt handler that upon startup checks

all the devices to see which of them needs attention
u vectored - the device is assigned to a specific interrupt handler

and a interrupt vector table is kept. The vector contains the
addresses of interrupt handlers by the interrupts. When an
interrupt is raised the vector is consulted by hardware (rather
than CPU) and the corresponding interrupt handler is started

6

Interrupt flowchart

7

(Unix) device drivers

n there is a variety of external devices and ways of communicating with
them, to simplify programming – use device drivers
u device driver – kernel module that is coded to communicate with a

particular device
n from the I/O subsystem’s perspective the device driver is

“black box” that supports a standard set of operations
(each device may implement these operations differently)

n Unix supports two device types
u block - stores data and performs I/O in fixed-size, randomly

accessible blocks; examples - hard disks, floppy drives,
CD-ROMs; due to the structured nature of the I/O operations on block
devices efficient cache/buffering algorithms can be used;

u character - can store and transfer arbitrary sized data. May transfer
one byte at a time (generating an interrupt after every byte) or perform
some internal buffering; examples - keyboard, mouse, clock, modem

8

I/O request
flowchart
and
hierarchy

9

Why STREAMS?

n Kernel interacts with drivers at a very high level leaving the
device driver to do most of I/O processing. It provides flexibility
of the design, yet only part of the work of the driver is
hardware dependent; the other part - high-level I/O
processing: queue management, buffering, caching, etc.
Every vendor writes their own device drivers
u code duplication

F large kernel
F greater risk of conflict

u complex drivers
n This problem is especially apparent in network driver design:

network protocols are complex and designed in
(interchangeable layers); this suggests a modular approach to
driver design

10

STREAMS
n STREAMS - a full-

duplex (bidirectional)
data transfer path
between a driver
and a user application

n Consists:
u module - consists

of a pair of queues:
F read - pass data

(in the form of
messages)
upstream - to
application

F write - pass messages downstream - to device
u stream head - handles system calls, may block
u driver end - handles interrupts, communicates to actual device

n except for stream head the modules communicate asynchronously:
module code may be executed in the context of different process

11

Reusing
modules

n TCP/IP protocol stack
consists of a layers of
protocols where an
entity on one layer
communicates with
a peer entity on the
same layer and
provides services to
the upper layer
protocol
and utilizes services
of the lower layer
without concern to its internal structure

n using streams modules can be assembled to fit the network configuration:
note how IP module is reused

