Lecture 16: File system interface/
Disk Managemen

« disk configuration and typical access times
« evolution of UNIX file system
« improving disk performance

+ using caching

« using head scheduling

Disk access times

Typically on a disk:
« 32-64 sectors per track
+ 1K bytes per sector
Data transfer rate is number of bytes rotating under the head per second
¢ 1KB/sector * 32 sectors / rotation * 120 rotations / second =
4MB/s
Disk I/0O time = seek + rotational delay + transfer
+ If head is at a random place on the disk
- Avg. seek time is 5 ms
- Avg. rotational delay is 4 ms
- Data transfer rate for a 1KB is 0.25 ms
- 1/0 time = 9.25 ms for 1KB
- Real transfer rate is roughly 100 KB / s
+ In contrast, memory access may be 20 MB / s (200 times faster)

Selecting sector size

« The read / write head needs to synchronize with the track as
it rotates

+ Need 100-1000 bits between each sector to measure
how fast disk is spinning
« If sector size is 1 byte
« Only 1% of disk holds useful data
+ 1/1000 transfer rate as before = 100 B/ s
« |If sector size is 1 KB
+ 90% of disk holds useful data
« Transfer rate is 100 KB/ s
« If sector size is 1 MB
+ Almost all of disk holds useful data

« Transfer rate is 4 MB / s (full disk transfer rate — seek
and rotational latency usually won't matter anymore)

+ space is wasted for small files!

On) Spindle
revious
ecture

» Seektime —
time required to
position heads
over the track /
cylinder

« Typically
10 ms to cross entire disk

« Rotational delay — time required for sector to rotate underneath the

head

+ 120 rotations / second = 8 ms / rotation

Disk hardware (cont.)

« Typical disk today
(Compag 40GB Ultra ATA 100 7200RPM hard disk = $369):

+ 16383 cylinders, 16 heads, 63 sectors/track

+ 16 platters * 16383 tracks/platter *
63 sectors/track * 4048 bytes/sector *
1/1024"3 GB/byte = 63GB unformatted

« 7200 rpm spindle speed, 8 ms average seek time, 100 MBps data
transfer rate

« Trends in disk technology
« Disks get smaller, for similar capacity
- Faster data transfer, lighter weight
« Disk are storing data more densely
- Faster data transfer

- Density improving faster than mechanical limitations (seek time,
rotational delay)

« Disks are getting cheaper (factor of 2 per year since 1991)

Selecting sector size (cont.)

« What about making the blocks bigger?
« Causes internal fragmentation
+ Most files are small, maybe one block
« Some measurements from a file system at UC Berkeley:

« Organization Space used Waste
« Data only 775.2 0%

+ +inodes, 512B block 828.7 6.9%
« +inodes, 1KB block 866.5 11.8%
« +inodes, 2KB block 948.5 22.4%
« +inodes, 4KB block 1128.3 45.6%

« The presence of small files kills the performance for large files!
+ Want big blocks to reduce the seek overhead for big files
« But... big blocks increase fragmentation for small files

Unix file system “the big picture

disk drive
/J partition l _ partition ‘
‘ bootb. ‘ superb. ilist \ directory blocks and file data blocks ‘ dir's inode
File's inode "] inode ‘ inode ‘ inode ‘ inode ‘ inode L atributes
File / pointer
attributes
block #
block #
1st
indirect
block #
Directory and file
1stindi- data blocks
rect block
7

Unix Fast-File System

« InBerkeley BSD 4.2 UNIX:
-
« Introduced concept of a cylinder group
- A cylinder is the set of corresponding tracks on all the disk
surfaces
- in
the cylinder as it is to access any other
- A cylinder group is a set of adjacent cylinders
« Each cylinder group has a copy of super block, bit map of free
blocks, ilist, and blocks for storing directories and files
« The OS tries to put related information together into the same
cylinder group
- Try to put all i-nodes in a directory in the same cylinder group
- try to put i-node and file blocks in the same cylinder group
- Try to put blocks for one file contiguously in the same cylinder
group: bitmap of free blocks makes this easy
- For long files, redirect each megabyte to a new cylinder group9

Extent-based allocation, journalling

« Modern filesystems further improve on filesystem desing

« two improvements in Veritas file system (VxFS) from Veritas Software
(see white paper reference on webpage)
« extent-based allocation
« rather than refer to individual data blocks the index blocs specifies

the beginning of an extent of continuously allocated blocks and the
number of blocks in the extent

- advantages - faster disk access, fewer indirections (combines
the advantages of continuous and indexed allocation)
- disadvantages - hard to select extent size
« journalling (also in NTFS and UFS in modern Unices)
« updating data entails multiple operations in several places:
-~ slow, not robust in case of a crash
+ metadata (directories, pointers, free list, etc.) needs to be updated
« improvement: synchronously write changes to a file (called log or
journal) and then asynchronously to all needed places on disk
- advantage: sequential synchronous write instead of distributed
asynchronous one

11

Traditional Unix File System

« In traditional UNIX (System V FS), and Berkeley
BSD 3.0 UNIX

+ Disk lock size was 512 bytes

« i-list follows superblock, has limited size determined at formatting
(limits the number of files on system

« directory contains fixed size records 16 bytes each (first two - i-node
number, the rest - file name)

« free blocks maintained in a linked list, superblock contains pointer to
first

« problems with System V FS:
« one superblock - becomes corrupted - filesystem unusable

« all I-nodes at the beginning of disk - reading files requires accessing
I-nodes - random disk access pattern

« files blocks are allocated at random
« practical measurements: when file system was first created
- Free list was ordered, and they - transfer rates up to 175 KB / s

- After a few weeks data and free blocks got so randomized - to 30
KB /'s; less than 4% of the maximum transfer rate!

+ 14 character names insufficient 8

Unix FFS (cont.)

« InBerkeley BSD 4.2 UNIX: (cont.)
« Block size was changed to 4096 bytes
+ Reduced fragmentation as follows:

- Each disk block can be used in its entirety, or can be broken up
into 2, 4, or 8 fragments

- For most of the blocks in the file, use the full block
- For the last block in the file, use as small a fragment as possible
- Can get as many as 8 very small files in one disk block

« This change resulted in
- Only as much fragmentation as a 1KB block size (w/ 4 fragments)
- Data transfer rates that were 47% of the maximum rate

« Other improvements:
+ Bit map instead of unordered free list - each bit corresponds to a
fragment
+ Variable length file names, symbolic links
+ File locking, disk quotas 10

Improving performance with good
block management

« OS usually keeps track of free blocks on the disk using a bit map
« Abit map is just an array of bits
+ 1 means the block is free,
+ 0 means the block is allocated to a file

+ Fora 1.2 GB drive, there are about 307,000 4KB blocks, so a bit
map takes up 38.4 KB (usually kept in memory)
« Try to allocate the next block of the file close to the previous block
+ Works well if disk isn’t full
o If disk is full, this is doesn’t work well
+ Solution — keep some space (about 10% of the disk) in reserve,
and don't tell users; never let disk get more than 90% full

« With multiple platters / surfaces, there are many possibilities (one
surface is as good as another), so the block can usually be
allocated close to the previous one

12

Improvi_n%](performance
using disk cache

Have OS (not hardware) manage a disk block cache to improve
performance
+ Use part of main memory as a cache
+ When OS reads a file from disk, it copies those blocks into the cache
+ Before OS reads a file from disk, it first checks the cache to see if
any of the blocks are there (if so, uses cached copy)
page cache (Solaris, new Linux, NT)

« storing files info as pages is more efficient than as blocks — can
apply virtual memory techniques, if so — no reason to differentiate

« unified buffer cache — combined (process and file I/O) paging
what page replacement to use?
- a variant of LRU seems good
- optimization for files for sequential access
« free behind — discards page as soon as it is read
« read ahead — pages are read in advance

Disk head scheduling (cont.)

FCFS - handle in the order of arrival
0 10 20 30 40 50 60 70 80 90 100

Advantages: simple, fair

Disadvantages: can use disk inefficiently (if one person is using file on
outer track, and other person is using file on inner track, will be many
long seeks)

Disk head scheduling (cont.)
SCAN (elevator algorithm) - Move the head 0 to 100, 100
to 0, picking up requests as it goes

0 10 20 30 40 50 60 70 80 90 100

« Advantages: better fairness (no starvation), but not perfect
+ Request on edge of disk just behind in direction traveling can wait
along time to be serviced (twice disk length)

« Even request in middle waits long time

Improving performance with disk
head scheduling

« Permute the order of the disk requests
« From the order that they arrive in
« Into an order that reduces the distance of seeks
« Examples:
+ Head just moved from lower-numbered track to get to track 30
+ Request queue: 61, 40, 18, 78
« Algorithms:
+ First-come first-served (FCFS)
+ Shortest Seek Time First (SSTF)
¢ SCAN (0to 100, 1001t00, ...)
¢ C-SCAN (0to 100, 0 to 100, ...)
+ LOOK (lowest-highest, highest-lowest)
¢ C-LOOK (lowest-highest, lowest-highest)

14

Disk head scheduling (cont.)
SSTF - select the request that requires the smallest seek
from current track

0 10 20 30 40 50 60 70 80 90 100

« Advantages: reduces arm movement, uses the disk rather efficiently
. Disadvantages:
« Fairness: disk can stay in one area for a long time (result =
starvation)
« Only accounts for seek time, not rotational delay (which is similar
to seek time), so isn't a very good overall measure of time to

access next block 16

Disk head scheduling (cont.)
LOOK (variant of SCAN) - don't go to edges if there are no
requests there

0 10 20 30 40 50 60 70 80 90 100

« Advantages: less wasted movement than SCAN

18

Disk head scheduling (cont.) Disk head scheduling (cont.)

C-SCAN -Move the head 0 to 100, picking up requests as C-LOOK -same as C-SCAN, don't go to edge if not
it goes, then big seek to 0 necessary

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
« Advantage: fairer than SCAN « Used for head positioning, also used for rotation scheduling

. Disadvantage: big seek is just wasted time

Summary: improving disk Disk management
performance

« Disk formatting

. Keep some structures in memory + Physical formatting — dividing disk into sectors: header, data

« Active inodes, file tables area, tr.ailer R
. Efficient free space management . chziz disks are preformatted, although special utilities can reformat
* Bitmaps .) « After formatting, must partition the disk, then write the data
» Careful allocation of disk blocks structures for the file system (logical formatting)
+ Contiguous allocation where possible . Boot block contains the “bootstrap” program for the computer
o Direct/ indirect blocks « System also contains a ROM with a bootstrap loader that loads
+ Good choice of block size this program
+ Cylinder groups . Disk system should ignore bad blocks
+ Keep some disk space in reserve + When disk is formatted, a scan detects bad blocks and tells disk
« Disk management system not to assign those blocks to files
+ Cache of disk blocks + blocks may go bad as disk is used
« Disk scheduling
21 22

Disk management (cont.)

« Disk reliability RAIDs
« Data normally assumed to be persistent
« Disk striping — data broken into blocks, successive blocks stored
on separate drives
« Mirroring — keep a “shadow” or “mirror” copy of the entire disk

+ Stable storage — data is never lost during an update — maintain
two physical blocks for each logical block, and both must be same
for a write to be successful

+ RAID5 - use parity disk

