
1

Lecture 16: File system interface/
Disk Management

n disk configuration and typical access times
n evolution of UNIX file system
n improving disk performance

u using caching
u using head scheduling

2

On
previous
lecture

n Seek time —
time required to
position heads
over the track /
cylinder
u Typically

10 ms to cross entire disk
n Rotational delay — time required for sector to rotate underneath the

head
u 120 rotations / second = 8 ms / rotation

3

Disk access times

n Typically on a disk:
u 32-64 sectors per track
u 1K bytes per sector

n Data transfer rate is number of bytes rotating under the head per second
u 1 KB / sector * 32 sectors / rotation * 120 rotations / second =

4 MB / s
n Disk I/O time = seek + rotational delay + transfer

u If head is at a random place on the disk
F Avg. seek time is 5 ms
F Avg. rotational delay is 4 ms
F Data transfer rate for a 1KB is 0.25 ms
F I/O time = 9.25 ms for 1KB
F Real transfer rate is roughly 100 KB / s

u In contrast, memory access may be 20 MB / s (200 times faster)
4

Disk hardware (cont.)
n Typical disk today

(Compaq 40GB Ultra ATA 100 7200RPM hard disk = $369):
u 16383 cylinders, 16 heads, 63 sectors/track
u 16 platters * 16383 tracks/platter *

63 sectors/track * 4048 bytes/sector *
1/1024^3 GB/byte = 63GB unformatted

u 7200 rpm spindle speed, 8 ms average seek time, 100 MBps data
transfer rate

n Trends in disk technology
u Disks get smaller, for similar capacity

F Faster data transfer, lighter weight
u Disk are storing data more densely

F Faster data transfer
F Density improving faster than mechanical limitations (seek time,

rotational delay)
u Disks are getting cheaper (factor of 2 per year since 1991)

5

Selecting sector size

n The read / write head needs to synchronize with the track as
it rotates
u Need 100-1000 bits between each sector to measure

how fast disk is spinning
n If sector size is 1 byte

u Only 1% of disk holds useful data
u 1/1000 transfer rate as before = 100 B / s

n If sector size is 1 KB
u 90% of disk holds useful data
u Transfer rate is 100 KB / s

n If sector size is 1 MB
u Almost all of disk holds useful data
u Transfer rate is 4 MB / s (full disk transfer rate — seek

and rotational latency usually won’t matter anymore)
u space is wasted for small files!

6

Selecting sector size (cont.)

n What about making the blocks bigger?
u Causes internal fragmentation
u Most files are small, maybe one block

n Some measurements from a file system at UC Berkeley:
u Organization Space used Waste
u Data only 775.2 0%
u +inodes, 512B block 828.7 6.9%
u +inodes, 1KB block 866.5 11.8%
u +inodes, 2KB block 948.5 22.4%
u +inodes, 4KB block 1128.3 45.6%

n The presence of small files kills the performance for large files!
u Want big blocks to reduce the seek overhead for big files
u But… big blocks increase fragmentation for small files

7

Unix file system “the big picture”

partition

disk drive

partition

bootb. superb. ilist directory blocks and file data blocks

inode inode inode inode inode
File

attributes

block #

block #

...
1st

indirect
block #

block

block

dir’s inode

block
block #

...
block #

dir.
attributes

pointer

block
block

block

inode #

...

File’s inode

1st indi-
rect block

dir’s
block

name

inode # name

Directory and file
data blocks

8

Traditional Unix File System
n In traditional UNIX (System V FS), and Berkeley

BSD 3.0 UNIX
u Disk lock size was 512 bytes
u i-list follows superblock, has limited size determined at formatting

(limits the number of files on system
u directory contains fixed size records 16 bytes each (first two - i-node

number, the rest - file name)
u free blocks maintained in a linked list, superblock contains pointer to

first

n problems with System V FS:
u one superblock - becomes corrupted - filesystem unusable
u all I-nodes at the beginning of disk - reading files requires accessing

I-nodes - random disk access pattern
u files blocks are allocated at random
u practical measurements: when file system was first created

F Free list was ordered, and they - transfer rates up to 175 KB / s
F After a few weeks data and free blocks got so randomized - to 30

KB / s; less than 4% of the maximum transfer rate!
u 14 character names insufficient

9

Unix Fast-File System
n In Berkeley BSD 4.2 UNIX:

u

u Introduced concept of a cylinder group
F A cylinder is the set of corresponding tracks on all the disk

surfaces
F in

the cylinder as it is to access any other
F A cylinder group is a set of adjacent cylinders

u Each cylinder group has a copy of super block, bit map of free
blocks, ilist, and blocks for storing directories and files

u The OS tries to put related information together into the same
cylinder group
F Try to put all i-nodes in a directory in the same cylinder group
F try to put i-node and file blocks in the same cylinder group
F Try to put blocks for one file contiguously in the same cylinder

group: bitmap of free blocks makes this easy
F For long files, redirect each megabyte to a new cylinder group 10

Unix FFS (cont.)
n In Berkeley BSD 4.2 UNIX: (cont.)
n Block size was changed to 4096 bytes

u Reduced fragmentation as follows:
F Each disk block can be used in its entirety, or can be broken up

into 2, 4, or 8 fragments
F For most of the blocks in the file, use the full block
F For the last block in the file, use as small a fragment as possible
F Can get as many as 8 very small files in one disk block

u This change resulted in
F Only as much fragmentation as a 1KB block size (w/ 4 fragments)
F Data transfer rates that were 47% of the maximum rate

n Other improvements:
u Bit map instead of unordered free list - each bit corresponds to a

fragment
u Variable length file names, symbolic links
u File locking, disk quotas

11

Extent-based allocation, journalling
n Modern filesystems further improve on filesystem desing
n two improvements in Veritas file system (VxFS) from Veritas Software

(see white paper reference on webpage)
n extent-based allocation

u rather than refer to individual data blocks the index blocs specifies
the beginning of an extent of continuously allocated blocks and the
number of blocks in the extent
F advantages - faster disk access, fewer indirections (combines

the advantages of continuous and indexed allocation)
F disadvantages - hard to select extent size

n journalling (also in NTFS and UFS in modern Unices)
u updating data entails multiple operations in several places:

F slow, not robust in case of a crash
u metadata (directories, pointers, free list, etc.) needs to be updated
u improvement: synchronously write changes to a file (called log or

journal) and then asynchronously to all needed places on disk
F advantage: sequential synchronous write instead of distributed

asynchronous one
12

Improving performance with good
block management

n OS usually keeps track of free blocks on the disk using a bit map
u A bit map is just an array of bits

u 1 means the block is free,
u 0 means the block is allocated to a file

u For a 1.2 GB drive, there are about 307,000 4KB blocks, so a bit
map takes up 38.4 KB (usually kept in memory)

n Try to allocate the next block of the file close to the previous block
u Works well if disk isn’t full
u If disk is full, this is doesn’t work well

u Solution — keep some space (about 10% of the disk) in reserve,
and don’t tell users; never let disk get more than 90% full

u With multiple platters / surfaces, there are many possibilities (one
surface is as good as another), so the block can usually be
allocated close to the previous one

13

Improving performance
using disk cache

n Have OS (not hardware) manage a disk block cache to improve
performance
u Use part of main memory as a cache
u When OS reads a file from disk, it copies those blocks into the cache
u Before OS reads a file from disk, it first checks the cache to see if

any of the blocks are there (if so, uses cached copy)
n page cache (Solaris, new Linux, NT)

u storing files info as pages is more efficient than as blocks – can
apply virtual memory techniques, if so – no reason to differentiate

u unified buffer cache – combined (process and file I/O) paging
what page replacement to use?
F a variant of LRU seems good
F optimization for files for sequential access

• free behind – discards page as soon as it is read
• read ahead – pages are read in advance

14

Improving performance with disk
head scheduling

n Permute the order of the disk requests
u From the order that they arrive in
u Into an order that reduces the distance of seeks

n Examples:
u Head just moved from lower-numbered track to get to track 30
u Request queue: 61, 40, 18, 78

n Algorithms:
u First-come first-served (FCFS)
u Shortest Seek Time First (SSTF)
u SCAN (0 to 100, 100 to 0, …)
u C-SCAN (0 to 100, 0 to 100, …)
u LOOK (lowest-highest, highest-lowest)
u C-LOOK (lowest-highest, lowest-highest)

15

Disk head scheduling (cont.)

n Advantages: simple, fair
n Disadvantages: can use disk inefficiently (if one person is using file on

outer track, and other person is using file on inner track, will be many
long seeks)

0 10 20 30 40 50 60 70 80 90 100

FCFS - handle in the order of arrival

16

Disk head scheduling (cont.)

n Advantages: reduces arm movement, uses the disk rather efficiently
n Disadvantages:

u Fairness: disk can stay in one area for a long time (result =
starvation)

u Only accounts for seek time, not rotational delay (which is similar
to seek time), so isn’t a very good overall measure of time to
access next block

0 10 20 30 40 50 60 70 80 90 100

SSTF - select the request that requires the smallest seek
from current track

17

Disk head scheduling (cont.)

n Advantages: better fairness (no starvation), but not perfect
u Request on edge of disk just behind in direction traveling can wait

a long time to be serviced (twice disk length)
u Even request in middle waits long time

n ek

0 10 20 30 40 50 60 70 80 90 100

SCAN (elevator algorithm) - Move the head 0 to 100, 100
to 0, picking up requests as it goes

18

Disk head scheduling (cont.)

n Advantages: less wasted movement than SCAN

0 10 20 30 40 50 60 70 80 90 100

LOOK (variant of SCAN) - don’t go to edges if there are no
requests there

19

Disk head scheduling (cont.)

n Advantage: fairer than SCAN
n Disadvantage: big seek is just wasted time

0 10 20 30 40 50 60 70 80 90 100

C-SCAN -Move the head 0 to 100, picking up requests as
it goes, then big seek to 0

20

Disk head scheduling (cont.)

n Used for head positioning, also used for rotation scheduling

0 10 20 30 40 50 60 70 80 90 100

C-LOOK -same as C-SCAN, don’t go to edge if not
necessary

21

Summary: improving disk
performance

n Keep some structures in memory
u Active inodes, file tables

n Efficient free space management
u Bitmaps

n Careful allocation of disk blocks
u Contiguous allocation where possible
u Direct / indirect blocks
u Good choice of block size
u Cylinder groups
u Keep some disk space in reserve

n Disk management
u Cache of disk blocks
u Disk scheduling

22

Disk management

n Disk formatting
u Physical formatting — dividing disk into sectors: header, data

area, trailer
u Most disks are preformatted, although special utilities can reformat

them
u After formatting, must partition the disk, then write the data

structures for the file system (logical formatting)
n Boot block contains the “bootstrap” program for the computer

u System also contains a ROM with a bootstrap loader that loads
this program

n Disk system should ignore bad blocks
u When disk is formatted, a scan detects bad blocks and tells disk

system not to assign those blocks to files
u blocks may go bad as disk is used

23

Disk management (cont.)

n Disk reliability RAIDs
u Data normally assumed to be persistent
u Disk striping — data broken into blocks, successive blocks stored

on separate drives
u Mirroring — keep a “shadow” or “mirror” copy of the entire disk
u Stable storage — data is never lost during an update — maintain

two physical blocks for each logical block, and both must be same
for a write to be successful

u RAID5 - use parity disk

