
1

Lecture 15: File system interface

n File system interface
u reasons for delegating storage management to OS
u file definition and operations on a file
u file access patterns
u directories

n File system structures
u I-nodes
u on-disk file system structures
u in-memory file system structures

n Disk space allocation methods
u continuous
u chained (linked)
u indexed
u multilevel indexing

2

Why OS manages
secondary storage?
n Levels of

abstraction User
Interface

Device-
Independent

Interface

Device
Interface

applications daemons servers

open() close()
read() write()

link()rename()
create()
delete()

tracks sectors blocks
seek() readblock() writeblock()

other hardwaredisk

n Hardware
underneath

3

Why OS manages
secondary storage? (cont.)

n Important to the user:
u Persistence — data stays around between power cycles and

crashes
u Ease of use — can easily find, examine, modify, etc. data
u Efficiency — uses disk space well
u Speed — can get to data quickly
u Protection — others can’t corrupt (or sometimes even see) my data

n OS provides:
u File system with directories and naming — allows user to specify

directories and names instead of location on disk
u Disk management — keeps track of where files are located on the

disk, accesses those files quickly
u Protection — no unauthorized access

4

What is a file
n A file is a logical unit of storage:

u A series of records (IBM mainframes)
u A series of bytes (UNIX, most PCs)
u A resource fork and data fork (Macintosh)

F Resource fork — labels, messages, etc.
F Data fork — code and data

n What is stored in a file?
u C++ source code, object files, executable files, shell scripts,

PostScript…
u Macintosh OS explicitly supports file types — TEXT, PICT, etc.
u Windows uses file naming conventions — “.exe” and “.com” for

executables, etc.
u UNIX looks at contents to determine type:

F Shell scripts — start with “#!”
F PostScript — starts with “%!PS-Adobe…”
F Executables — starts with magic number

5

File Operations

n Create(name)
u Constructs an i-node on disk to represent the newly created file

F Adds an entry to the directory to associate name with that i-
node

u Allocates disk space for the file
F Adds disk location to file descriptor

n fileid = Open(name, mode)
u Allocates a unique identifier called the file ID (identifier) (returned

to the user)
u Sets the mode (r, w, rw) to control concurrent access to the file

n Close(fileId)
n Delete(fileId)

u Deletes the file’s inode from the disk, and removes it from the
directory

6

n Sequential access
u Data is processed in order, one byte at a time, always going forward
u Most accesses are of this form
u Example: compiler reading a source file

n Direct / random access
u Can access any byte in the file directly, without accessing any of its

predecessors
u Example: accessing database record 12

n Keyed access
u Can access a byte based on a key value
u Example: database search, dictionary
u OS usually does not support keyed access

F User program must determine the address from the key, then use
random access (provided by the OS) into the file

Common file access patterns

7

File Operations (cont.)

n Read(fileId, from, size, bufAddress)
u Random access read
u Reads size bytes from file fileId, starting at position from, into the

buffer specified by bufAddress
for (pos=from, i=0 ; i < size ; i++)

bufAddress[i] = file[pos++];
n Read(fileId, size, bufAddress)

u Sequential access read
u Reads size bytes from file fileId, starting at the current file

position fp, into the buffer specified by bufAddress, and then
increments fp by size
for (pos=fp, i=0 ; i < size ; i++)

bufAddress[i] = file[pos++];
fp += size;

n Write — similar to Read
8

n Directories of named files
u User and OS must have some way to refer to files stored on the disk
u OS needs to use numbers (index into an array of inodes) (efficient,

etc.)
u User wants to use textual names (readable, mnemonic, etc.)
u OS uses a directory to keep track of names and corresponding file

indices
n Simple naming

u One name space for the entire disk
F Every name must be unique

u Implementation:
F Store directory on disk
F Directory contains <name, index> pairs

u Used by early mainframes, early Macintosh OS, and MS DOS

Directories and naming

9

n User-based naming
u One name space for each user

F Every name in that user’s directory must be unique, but two
different users can use the same name for a file in their directory

u Used by TOPS-10 (DEC mainframe from the early 1980s)
n Multilevel naming

u Tree-structured name space
u Implementation:

F Store directories on disk, just like files
F Each directory contains <name, index> pairs in no particular

order
• The file pointed to by a directory can be another directory

– Names have “/” separating levels
• Resulting structure is a tree of directories

u Used by UNIX

Directories and naming (cont.)

10

n multilevel naming - unambiguous but cumbersome:
n this file’s name is:

/home/mikhail/public_html/classes/os.s00/L17files.PDF
n OS maintains current working directory as part of process state

thus a program may refer to files relative to current working
directory

n each directory has two special entries:
. - refers to the directory itself
.. - refers to parent directory (root directory has .. pointing to

itself)
n each file can be listed in several different directories. Each

reference is called hard-link; file continues to exist as long as
there is at least one hard-link

Unix directories

11

I-nodes

n Every file is described by an i-node (UNIX term - stands for
index node), which may contain (varies with OS):
u Type
u Access permissions — read, write, etc.
u Link count — number of directories that contain this file
u Owner, group
u Size
u Access times — when created, last accessed, last

modified
u Blocks where file is located on disk

n Not included:
u Name of file

12

Unix file system
n An i-node represents a file

u All i-nodes are stored on the disk in a fixed-size array called the ilist
F The size of the ilist array is determined when the disk is initialized
F The index of a file descriptor in the array is called its inode

number, or inumber
u I-nodes for active files are also cached in memory in the active inode

table
n A UNIX disk may be divided into partitions, each of which contains:

u Blocks for storing directories and files
u Blocks for storing the ilist

F i-nodes corresponding to files
u Some special i-nodes

F Boot block — code for booting the system
F Super block - size of disk, number of free blocks, list of free blocks,

size of ilist, number of free inodes in ilist, etc.

13

Unix file system (cont.)

n Note that in practice the picture is more complicated
because the directory structure is added:
u a directory is a file that contains the list of file names

and inodes

partition

disk drive

partition

bootb. superb. ilist directory blocks and file data blocks

inode inode inode inode inode

High level view

14

File descriptors,
file tables

n Open file table
(one, belongs to OS)
u Lists all open files
u Each entry contains:

F A file descriptor (sometimes also called
i-node - don’t confuse with i-node on the
disk!)

F Open count — number of
processes that have the file open

n Per-process file table (many)
u List all open files for that process
u Each entry contains:

F Pointer to entry in open file table
F Current position (offset) in file

position

Per-Process
File Table

Per-Process
File Table

position

position

Open
File Table

count file descrip.

count file descrip.

OS

15

Continuous allocation
n OS keeps an ordered list of free blocks
n allocates contiguous groups of

blocks when it creates a file
n I-node must store start

block and length of file
n Used in IBM 370, some write-only disks
n Have to use usual dynamic allocation

techniques (first-fit, best-fit, etc.)
n advantages:

u simple
u efficient sequential access, reasonably efficient random access
u small number of seeks (head movement), most may be on same track
u good for storing data on CDROM

n disadvantages:
u May have difficulty changing file size (size is specified when file is

created)
u Problems with external fragmentation

n compaction - relocation of files so that there is no free space between them
16

Chained (linked) allocation
n OS keeps an ordered list of free blocks
n File descriptor stores pointer to first block
n Each block stores pointer to next block
n Used in DEC TOPS-10, Xerox Alto
n Advantages:

u No external fragmentation
u Any free space is as good as any other
u Can easily change file size

(no need to declare in advance)
n Disadvantages:

u Reasonable, but not great, for sequential access (one seek each time)
u Inefficient random access — have to follow many links
u Lost space due to lots of pointers (small, but adds up)
u Lots of seeks to find a block
u Not very robust — lose a block, lose rest of file

n compaction can be used so that blocks of one file are located
continuously on the disk - optimizes disk access.

17

Linked allocation variant: FAT
n File allocation table (FAT) a variant of linked list allocation
n used in MS-DOS, OS/2, Windows
n the beginning of each partition contains the indexing table FAT
n directory entry has the number of the first block
n FAT

u has an entry for each block
u the FAT entry indexed by the first block has the number of the second

block and so on
u last block’s FAT entry has reserved EOF symbol
u unused blocks have \0 entry

18

Indexed allocation
n OS keeps a list of free blocks

u OS allocates an array (called the
index block) to hold pointers to all the
blocks used by the file

u Allocates blocks only on demand
n Used in DEC VMS, Nachos
n Advantages:

u Can easily grow up to maximum size
u Both sequential and random accesses

are easy
n Disadvantages:

u Limit on maximum file size
u Lots of seeks since data isn’t contiguous
u Wasted space for pointers (need a whole block even for one pointer)

19

Multilevel indexed allocation
n Used in UNIX (numbers below are for traditional UNIX,

BSD UNIX 4.1)
n Each inode contains 13 block pointers

u First 10 pointers point to data blocks (each 512 bytes long) of a
file
F If the file is bigger than 10 blocks (5,120 bytes), the 11th

pointer points to a single indirect block, which contains 128
pointers to 128 more data blocks (can support files up to
70,656 bytes)

• If the file is bigger than that, the 12th pointer points to a
double indirect block, which contains 128 pointers to 128
more single indirect blocks (can support files up to
8,459,264 bytes)

– If the file is bigger than that, the 13th pointer points to
a triple indirect block, which contains 128 pointers to
128 more double indirect blocks

u Max file size is 1,082,201,087 bytes
20

Multilevel
indexed
allocation
(cont.)

n Advantages:
u Simple to implement
u Supports incremental file growth
u Works well for small files

n Disadvantages:
u Inefficient access to very large files
u Data gets spread around - more seeks

21

Unix file system “the big picture”

partition

disk drive

partition

bootb. superb. ilist directory blocks and file data blocks

inode inode inode inode inode
File

attributes

block #

block #

...
1st

indirect
block #

block

block

dir’s inode

block
block #

...
block #

dir.
attributes

pointer

block
block

block

inode #

...

File’s inode

1st indi-
rect block

dir’s
block

name

inode # name

Directory and file
data blocks

22

Working with directories (Lookup)

n A directory is a table of entries:
u 2 bytes — inumber
u 14 bytes — file name (improved in BSD 4.2 and later)

n Search to find the file begins with either root, or the current
working directory
u Inode 2 points to the root directory (“ / ”)
u Example above shows lookup of

/usr/ast/mbox

