
1

Previously discussed

n Segmentation - the process address space is divided into logical
pieces called segments. The following are the example of types
of segments
u code
u bss (statically allocated data)
u heap
u stack

n process may have several segments of the same type!
n segments are used for different purposes, some of them may

grow, OS can distinguish types of segments and treat them
differently, example:
u allowing code segments to be shared between processes
u prohibiting writing into code segments

2

Lecture 14:
paging and
virtual
memory

n paging
u definition of paging
u implementation
u sharing
u protection
u speeding up - translation look-aside

buffers
n virtual memory

u definition
u page replacement strategies

F FIFO
F optimal
F Least Recently Used

u Implementing LRU
F recently used bit
F second chance algorithm

u Frame allocation
u Thrashing

3

What is paging

n Each process is divided into a number of small, fixed-size partitions
called pages
u Physical memory is divided into a large number of small, fixed-size

partitions called frames
u Pages have nothing to do with segments
u Page size = frame size

F Usually 512 bytes to 16K bytes
u The whole process is still loaded into memory, but the pages of a

process do not have to be loaded into a contiguous set of frames
u Virtual address consists of page number and offset from beginning

of that page
n Compared to segmentation, paging:

u Makes allocation and swapping easier
u No external fragmentation
u but there may be internal fragmentation. Why?

4

Page table

n A page table keeps
track of every page in
a particular process

n each entry contains
the corresponding
frame in main
(physical)
memory

n note that there is a
separate page table
for every process

n address space -
the set of all
addresses

n user view of address space - continuous
n physical address space - fragmented

5

Address
lookup
in
paging

n Virtual address (or logical address) - used by
user program consists of two parts - page number and offset (or
displacement) within the page.

n When the address needs to be accessed page number is translated
into frame number in page table.

n Physical address contains frame number and frame offset

virtual address

page offset

page table

frame

pages

physical address

frame offset
access
physical
memory

6

Sharing
pages

n Paging provides
easy way of
reusing the
code

n if multiple
processes are
executing the
same code (say,
text editor) the
pages
containing
the code for
the editor can
be shared

n the code has to be reentrant (not self-modifying) and write protected -
usually every page has a read-only bit

n how can shared memory be implemented using the same technique?

7

n The process may not use the whole page table
n unused portions of the page table are protected by valid/invalid bit
n the address space for

the process is 0
through 12,287
(6 - 2K pages)

n even though the page
table contains
additional unused
page references they
are marked as
invalid

n attempt to address
these pages will result
in a trap with “memory
protection violation”

n similarly read/write
protection can be
organized

Protection in page tables

8

n A modern microprocessor has, say, a 32 bit virtual address
space (232 = 4 GB)

n If page size is 1k (210), that means all the page tables combined could have
over 222 (approximately 4 million) page entries, each at least a couple of
bytes long

n Problem: if the main memory is only, say, 16 Mbytes, storing these page
table there presents a problem!
u Solution: store page tables in virtual memory (discussed later), bring in

pieces as necessary
n New problem: memory access time may be doubled since the page tables

are now subject to paging
u (one access to get info from page table, plus one access to get data

from memory)
u New solution: use a special cache (called a Translation Lookaside

Buffer (TLB)) to cache page table entries
n a TLB consists of two parts key (page number) and value (frame number)
n page lookup in all TLBs can be done in one step

TLBs

9

Using
TLBs

n Page # is
first looked
in TLBs if
found (cache
hit) we can
go straight
to the frame

n if not found
(cache miss)
we have to
look up the
frame in the
page table

n program with good code locality of reference benefits from TLBs
n TLBs have to be flushed with each context switch - new page table is loaded

10

Virtual memory
n Virtual memory is the technique that allows to execute

processes that may not be completely in physical memory
n can be implemented by:

u demand paging (only the necessary pages are brought in)
u segmentation (only the segments that are currently in use are

brought in)
n demand paging

u while not in use the pages are stored on a disk - backing store
u the page table indicates whether the page is in memory or in

backing store
u if a process requests a page that is not in memory

F a page fault trap is generated and control is passed to OS
F the faulted process is suspended (another process may be

started while it waits) and a request to fetch the page is
generated

F when page is in memory the page table is updated and the
instruction that caused page fault is re-executed

n virtual memory is transparent to user processes

11

Page faults in detail
n an attempts to access a page that’s not in physical

memory causes a page fault
u page table must include a present bit (sometimes called valid bit)

for each page
u an attempt to access a page without the present bit set results in

a page fault, an exception which causes a trap to the OS
u when a page fault occurs:

F OS must page in the page — bring it from disk into a free
frame in physical memory

F OS must update page table & present bit
F faulting process continues execution

n unlike interrupts, a page fault can occur any time there’s a memory
reference
u even in the middle of an instruction!

(how? and why not with interrupts??)
u however, handling the page fault must be invisible to the process

that caused it 12

Handling Page Faults

n the page fault handler must be able to recover enough of the
machine state (at the time of the fault) to continue executing the
program

n the PC is usually incremented at the beginning of the instruction
cycle
u if OS / hardware doesn’t do anything special, faulting process will

execute the next instruction (skipping faulting one)
n with hardware support:

u test for faults before executing instruction (IBM 370)
u instruction completion — continue where you left off (Intel 386…)
u restart instruction, undoing (if necessary) whatever the instruction

has already done (PDP-11, MIPS R3000, DEC Alpha, most
modern architectures)

13

Starting a new process

n processes are started with 0 or more of their virtual pages in
physical memory, and the rest on the disk

n page selection — when are new pages brought into physical
memory?
u prepaging — pre-load enough to get started: code, static

data, one stack page (DEC ULTRIX)
u demand paging — start with 0 pages, load each page on

demand (when a page fault occurs) (most common
approach)
F disadvantage: many (slow) page faults when program

starts running
n demand paging works due to the principle of locality of

reference
u Knuth estimated that 90% of a program’s time is spent in

10% of the code

14

Page replacement
n To improve I/O utilization the OS over-allocates the main

memory - if sum of address space of all executing processes
is greater than the physical memory

n What happens if a process requests a page and there are no free frames?
n to (partially) remedy the situation a clean/dirty bit is associated with every

in-memory page
u if the page has been modified - it’s dirty and has to be written to disk
u if the page has not been modified - (it is the same as it’s copy in the

backing store) - it can be just discarded and replaced
n What if we still need to select a page to replace? The OS has to evict

(remove) a page from memory to backing store
n Replacement strategies

u FIFO - simplest to implement, performance is not always good
u Optimal - replace the page that will not be used for the longest period

of time - cannot be implemented (requires future knowledge)
u LRU - replace the least recently used page

15

Performance of demand paging
n effective access time for demand-paged memory can be

computed as:
eacc = (1–p)(macc) + (p)(pfault)

where:
p = probability that page fault will occur
macc = memory access time,
pfault = time needed to service page fault

n with typical numbers:
eacc = (1–p)(100) + (p)(25,000,000) = 100 + (p)(24,999,900)
u If p is 1 in 1000,

eacc = 25,099.9 ns (250 times slower!)
u To keep overhead under 10%,

110 > 100 + (p)(24,999,900)
F p must be less than 0.0000004
F less than 1 in 2,500,000 memory accesses must page fault!

16

Page replacement strategies

n Assumptions: 4
pages, 3 frames

n Page references:
ABCABDADBCA

frame 1
frame 2
frame 3

A B C A B D A D B C BFIFO

frame 1
frame 2
frame 3

A B C A B D A D B C BOptimal

frame 1
frame 2
frame 3

A B C A B D A D B C BLRU

17

Implementing LRU
n A perfect implementation would be something like this:

u Associate a clock register with every page in physical memory
u Update the clock value at every access
u During replacement, scan through all the pages and find the one with

the lowest value in its clock register
u What’s wrong with all this implementation?

n Simple approximations:
u Not-recently-used (NRU)

F Use an R (reference) bit, and set it whenever a page is referenced
F Clear the R bit periodically, such as every clock interrupt
F Choose any page with a clear R bit to evict
F there is overhead on clearing the bits and the picture may not be

good enough - additional bits may be needed

18

Second-
chance
replace-
ment
(clock)

n Use an R
(reference) bit as
before

n On a page fault,
circle around
the “clock” of all
pages in the
user memory pool

n Start after the
page
examined last
time

n If the R bit for the page is set, clear it
n If the R bit for the page is clear, replace that page and set the bit
n Can it loop forever? What does it mean if the “hand” is moving slowly?

…if the hand is moving quickly

19

Frame Allocation

n How many frames does each process get (M frames, N
processes)?
u At least 2 frames (one for instruction, one for data), maybe

more…
u Maximum is number in physical memory

n Allocation algorithms:
u Equal allocation - each gets M / N frames
u Proportional allocation - number depends on size and priority

n Which pool of frames is used for replacement?
u Local replacement - process can only reuse its own frames

F predictable
u Global replacement - process can reuse any frame (even if used

by another process)
F processes may be able to grow dynamically

20

Thrashing

n Consider what happens when memory gets
overcommitted:
u After each process runs, before it gets a chance to run

again, all of its pages may get paged out
u The next time that process runs, the OS will spend a lot of

time page faulting, and bringing the pages back in
F All the time it’s spending on paging is time that it’s not

getting useful work done
F With demand paging, we wanted a very large virtual

memory that would be as fast as physical memory, but
instead we’re getting one that’s as slow as the disk!

n This wasted activity due to frequent paging is called thrashing
u Analogy — student taking too many courses, with too

much work due

21

Working Sets
n Thrashing occurs when the sum of all processes’

requirement is greater than physical memory
F Solution — use local page frame replacement, don’t let processes

compete
• Doesn’t help, as an individual process can still thrash

F Solution — only give a process the number of frames that it “needs”
• Change number of frames allocated to each process over time
• If total need is too high, pick a process and suspend it

n Working set (Denning, 1968) — the collection of pages that a process is
working with, and which must be resident in main memory, to avoid
thrashing
u Always keep working set in memory
u Other pages can be discarded as necessary
u implementation - choose time T, pages that were accessed during time T

constitute a working set, the rest can be discarded, scan periodically to
update working set
F Unix: T - about one second; scans - every several milliseconds

