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Previously discussed

n Segmentation - the process address space is divided into logical 
pieces called segments. The following are the example of types 
of segments
u code
u bss (statically allocated data)
u heap
u stack

n process may have several segments of the same type!
n segments are used for different purposes, some of them may 

grow, OS can distinguish types of segments and treat them 
differently, example:
u allowing code segments to be shared between processes
u prohibiting writing into code segments
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Lecture 14: 
paging and 
virtual 
memory

n paging
u definition of paging
u implementation
u sharing
u protection
u speeding up - translation look-aside 

buffers
n virtual memory

u definition
u page replacement strategies

F FIFO
F optimal
F Least Recently Used

u Implementing LRU
F recently used bit
F second chance algorithm

u Frame allocation
u Thrashing
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What is paging

n Each process is divided into a number of small, fixed-size partitions 
called pages
u Physical memory is divided into a large number of small, fixed-size 

partitions called frames
u Pages have nothing to do with segments
u Page size = frame size

F Usually 512 bytes to 16K bytes
u The whole process is still loaded into memory, but the pages of a 

process do not have to be loaded into a contiguous set of frames
u Virtual address consists of page number and offset from beginning 

of that page
n Compared to segmentation, paging:

u Makes allocation and swapping easier
u No external fragmentation
u but there may be internal fragmentation. Why?
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Page table

n A page table keeps
track of every page in 
a particular process

n each entry contains
the corresponding
frame in main
(physical)
memory

n note that there is a 
separate page table
for every process

n address space -
the set of all
addresses

n user view of address space - continuous
n physical address space - fragmented
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Address
lookup 
in 
paging

n Virtual address (or logical address) - used by
user program consists of two parts - page number and offset (or 
displacement) within the page.

n When the address needs to be accessed  page number is translated
into frame number in page table. 

n Physical address contains frame number and frame offset 

virtual address

page offset

page table

frame

pages

physical address

frame offset
access
physical
memory
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Sharing 
pages

n Paging provides
easy way of 
reusing the
code

n if multiple
processes are
executing the
same code (say,
text editor) the
pages 
containing
the code for
the editor can
be shared

n the code has to be reentrant (not self-modifying) and write protected -
usually every page has a read-only bit

n how can shared memory be implemented using the same technique?



7

n The process may not use the whole page table
n unused portions of the page table are protected by  valid/invalid bit
n the address space for

the process is 0 
through 12,287 
(6 - 2K pages) 

n even though the page
table contains 
additional unused 
page references they
are marked as 
invalid

n attempt to address
these pages will result
in a trap with “memory
protection violation”

n similarly read/write
protection can be
organized

Protection in page tables
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n A modern microprocessor has, say, a 32 bit virtual address 
space (232 = 4 GB)

n If page size is 1k (210), that means all the page tables combined could have 
over 222 (approximately 4 million) page entries, each at least a couple of 
bytes long

n Problem:  if the main memory is only, say, 16 Mbytes, storing these page 
table there presents a problem!
u Solution:  store page tables in virtual memory (discussed later), bring in 

pieces as necessary
n New problem:  memory access time may be doubled since the page tables 

are now subject to paging
u (one access to get info from page table, plus one access to get data 

from memory)
u New solution:  use a special cache (called a Translation Lookaside

Buffer (TLB)) to cache page table entries
n a TLB consists of two parts key (page number) and value (frame number)
n page lookup in all TLBs can be done in one step

TLBs
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Using 
TLBs

n Page # is 
first looked
in TLBs if
found (cache
hit) we can
go straight
to the frame

n if not found
(cache miss)
we have to 
look up the
frame in the
page table

n program with good code locality of reference benefits from TLBs
n TLBs have to be flushed with each context switch - new page table is loaded
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Virtual memory
n Virtual memory is the technique that allows to execute 

processes that may not be completely in physical memory
n can be implemented by:

u demand paging (only the necessary pages are brought in)
u segmentation (only the segments that are currently in use are 

brought in)
n demand paging

u while not in use the pages are stored on a disk - backing store
u the page table indicates whether the page is in memory or in 

backing store
u if a process requests a page that is not in memory

F a page fault trap is generated and control is passed to OS
F the faulted process is suspended (another process may be 

started while it waits) and a request to fetch the page is 
generated

F when page is in memory the page table is updated and the 
instruction that caused page fault is re-executed

n virtual memory is transparent to user processes
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Page faults in detail
n an attempts to access a page that’s not in physical 

memory causes a page fault
u page table must include a present bit (sometimes called valid bit) 

for each page
u an attempt to access a page without the present bit set results in 

a page fault, an exception which causes a trap to the OS
u when a page fault occurs:

F OS must page in the page — bring it from disk into a free 
frame in physical memory

F OS must update page table & present bit
F faulting process continues execution

n unlike interrupts, a page fault can occur any time there’s a memory 
reference
u even in the middle of an instruction!

(how?  and why not with interrupts??)
u however, handling the page fault must be invisible to the process 

that caused it 12

Handling Page Faults

n the page fault handler must be able to recover enough of the 
machine state (at the time of the fault) to continue executing the 
program

n the PC is usually incremented at the beginning of the instruction 
cycle
u if OS / hardware doesn’t do anything special, faulting process will 

execute the next instruction (skipping faulting one)
n with hardware support:

u test for faults before executing instruction (IBM 370)
u instruction completion — continue where you left off (Intel 386…)
u restart instruction, undoing (if necessary) whatever the instruction 

has already done (PDP-11, MIPS R3000, DEC Alpha, most 
modern architectures)
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Starting a new process

n processes are started with 0 or more of their virtual pages in 
physical memory, and the rest on the disk

n page selection — when are new pages brought into physical 
memory?
u prepaging — pre-load enough to get started:  code, static 

data, one stack page (DEC ULTRIX) 
u demand paging — start with 0 pages, load each page on 

demand (when a page fault occurs) (most common 
approach)
F disadvantage:  many (slow) page faults when program 

starts running
n demand paging works due to the principle of locality of 

reference
u Knuth estimated that 90% of a program’s time is spent in 

10% of the code
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Page replacement
n To improve I/O utilization the OS over-allocates the main

memory - if sum of address space of all executing processes
is greater than the physical memory

n What happens if a process requests a page and there are no free frames?
n to (partially) remedy the situation a clean/dirty bit is associated with every 

in-memory page
u if the page has been modified - it’s dirty and has to be written to disk
u if the page has not been modified - (it is the same as it’s copy in the 

backing store) - it can be just discarded and replaced
n What if we still need to select a page to replace? The OS has to evict

(remove) a page from memory to backing store
n Replacement strategies

u FIFO - simplest to implement, performance is not always good
u Optimal - replace the page that will not be used for the longest period 

of time - cannot be implemented (requires future knowledge) 
u LRU - replace the least recently used page
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Performance of demand paging
n effective access time for demand-paged memory can be 

computed as:
eacc = (1–p)(macc) + (p)(pfault)

where:
p = probability that page fault will occur
macc = memory access time, 
pfault = time needed to service page fault

n with typical numbers:
eacc = (1–p)(100) + (p)(25,000,000) = 100 + (p)(24,999,900)
u If p is 1 in 1000,

eacc = 25,099.9 ns     (250 times slower!)
u To keep overhead under 10%,

110 > 100 + (p)(24,999,900)
F p must be less than 0.0000004
F less than 1 in 2,500,000 memory accesses must page fault!
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Page replacement strategies

n Assumptions: 4 
pages, 3 frames

n Page references:  
ABCABDADBCA

frame 1
frame 2
frame 3

A B C A B D A D B C BFIFO

frame 1
frame 2
frame 3

A B C A B D A D B C BOptimal

frame 1
frame 2
frame 3

A B C A B D A D B C BLRU
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Implementing LRU
n A perfect implementation would be something like this:

u Associate a clock register with every page in physical memory
u Update the clock value at every access
u During replacement, scan through all the pages and find the one with 

the lowest value in its clock register
u What’s wrong with all this implementation?

n Simple approximations:
u Not-recently-used (NRU)

F Use an R (reference) bit, and set it whenever a page is referenced
F Clear the R bit periodically, such as every clock interrupt
F Choose any page with a clear R bit to evict
F there is overhead on clearing the bits and the picture may not be 

good enough - additional bits may be needed
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Second-
chance 
replace-
ment 
(clock)

n Use an R 
(reference) bit as 
before

n On a page fault, 
circle around 
the “clock” of all
pages in the
user memory pool

n Start after the 
page 
examined last
time

n If the R bit for the page is set, clear it
n If the R bit for the page is clear, replace that page and set the bit
n Can it loop forever? What does it mean if the “hand” is moving slowly?

…if the hand is moving quickly
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Frame Allocation

n How many frames does each process get (M frames, N 
processes)?
u At least 2 frames (one for instruction, one for data), maybe 

more…
u Maximum is number in physical memory

n Allocation algorithms:
u Equal allocation - each gets M / N frames
u Proportional allocation - number depends on size and priority

n Which pool of frames is used for replacement?
u Local replacement - process can only reuse its own frames

F predictable
u Global replacement - process can reuse any frame (even if used 

by another process)
F processes may be able to grow dynamically
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Thrashing

n Consider what happens when memory gets 
overcommitted:
u After each process runs, before it gets a chance to run 

again, all of its pages may get paged out
u The next time that process runs, the OS will spend a lot of 

time page faulting, and bringing the pages back in
F All the time it’s spending on paging is time that it’s not 

getting useful work done
F With demand paging, we wanted a very large virtual 

memory that would be as fast as physical memory, but 
instead we’re getting one that’s as slow as the disk!

n This wasted activity due to frequent paging is called thrashing
u Analogy — student taking too many courses, with too 

much work due
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Working Sets
n Thrashing occurs when the sum of all processes’ 

requirement is greater than physical memory
F Solution — use local page frame replacement, don’t let processes 

compete
• Doesn’t help, as an individual process can still thrash

F Solution — only give a process the number of frames that it “needs”
• Change number of frames allocated to each process over time
• If total need is too high, pick a process and suspend it

n Working set (Denning, 1968) — the collection of pages that a process is 
working with, and which must be resident in main memory, to avoid 
thrashing
u Always keep working set in memory
u Other pages can be discarded as necessary
u implementation - choose time T, pages that were accessed during time T 

constitute a working set, the rest can be discarded, scan periodically to 
update working set
F Unix: T - about one second; scans - every several milliseconds


