Previously discussed

= Segmentation - the process address space is divided into logical
pieces called segments. The following are the example of types
of segments
« code
+ bss (statically allocated data)
+ heap
« stack
« process may have several segments of the same type!

« segments are used for different purposes, some of them may
grow, OS can distinguish types of segments and treat them
differently, example:

+ allowing code segments to be shared between processes
« prohibiting writing into code segments

What is paging

« Each process is divided into a number of small, fixed-size partitions
called pages

+ Physical memory is divided into a large number of small, fixed-size
partitions called frames

+ Pages have nothing to do with segments
+ Page size = frame size
- Usually 512 bytes to 16K bytes

+ The whole process is still loaded into memory, but the pages of a
process do not have to be loaded into a contiguous set of frames

+ Virtual address consists of page number and offset from beginning
of that page

« Compared to segmentation, paging:
+ Makes allocation and swapping easier
+ No external fragmentation
« but there may be internal fragmentation. Why?

Ad d ress virtual address physical address
[[page T offset | [_frame | offset Jrmm—
! 00 k u p I T access
n physical
pag in g page table memory
pagesI
frame

« Virtual address (or logical address) - used by
user program consists of two parts - page number and offset (or
displacement) within the page.

« When the address needs to be accessed page number is translated
into frame number in page table.

« Physical address contains frame number and frame offset

« paging
Lecture 14: « definition of paging
pa Ing an + implementation
virtua + sharing
memo ry + protection
+ speeding up - translation look-aside
buffers
« virtual memory
« definition
+ page replacement strategies
- FIFO
- optimal
- Least Recently Used
+ Implementing LRU
- recently used bit
- second chance algorithm
+ Frame allocation)
« Thrashing
Page table i
T
gl) nj
. A page table keeps o1 I
track of every page in | ¥ 14 1| et
a particular process | page2 23 3
. each entry contains — T I
the corresponding [P page bl al pagad
frame in main il p| e
(physical) momgy Bl
memory 5
. note that there is a —
separate page table "E
for every process 7| sam3
« address space - 4
the set of all Pyl
addresses -
« user view of address space - continuous
« physical address space - fragmented
4
Sharing s ML
pages il I 1 =
Paging provides | *" | "_. 7|
easy way of Nl g 1w
reusing the vl L ' : ~
code i =
if multiple —1 Kl
processes are [+
executing the = dond | g et
same code (say, LA ke B i
text editor) the —1 [l
pages { H
containing | |
the code for bl | pa e
the editor can =l R
be shared P h

the code has to be reentrant (not self-modifying) and write protected -
usually every page has a read-only bit

how can shared memory be implemented using the same technique?

Protection in page tables

USI n g address
TLBs e

Page #is
first looked TLB hit
in TLBs if
found (cache
hit) we can
go straight

to the frame p{
if not found TLB miss
(cache miss)

we have to

look up the

frame in the page table

page table

program with good code locality of reference benefits from TLBs

TLBs have to be flushed with each context switch - new page table is loaded

The process may not use the whole page table

unused portions of the page table are protected by valid/invalid bit

the address space for —
the process is 0 °
through 12,287 1
(6 - 2K pages) B —
even though the page ooo00 frame number valid—invalid bit -
table contains page 0 \ 3| peeet
additional unused page 1

4| page2

page references they

page 2
are marked as

invalid page 3
attempt to address page 4

7| paged

. 0,468 i
these pages will result " 7Loft

page 5 8 paged

in a trap with “memory 12287 page table

: Lo 9| page5
protection violation

similarly read/write

protection can be page n

organized

Togical

page frame
number _number

physical
address.

physical
memory

LB

H

9

Page faults in detail

an attempts to access a page that's not in physical
memory causes a page fault

+ page table must include a present bit (sometimes called valid bit)
for each page

+ an attempt to access a page without the present bit set results in
a page fault, an exception which causes a trap to the OS
+ when a page fault occurs:

- OS must page in the page — bring it from disk into a free
frame in physical memory

- OS must update page table & present bit
-~ faulting process continues execution
unlike interrupts, a page fault can occur any time there’s a memory
reference
+ even in the middle of an instruction!
(how? and why not with interrupts??)
+ however, handling the page fault must be invisible to the process
that caused it 1

TLBs
A modern microprocessor has, say, a 32 bit virtual address
space (2% = 4 GB)
If page size is 1k (2), that means all the page tables combined could have
over 2?2 (approximately 4 million) page entries, each at least a couple of
bytes long

Problem: if the main memory is only, say, 16 Mbytes, storing these page
table there presents a problem!

+ Solution: store page tables in virtual memory (discussed later), bring in
pieces as necessary

New problem: memory access time may be doubled since the page tables
are now subject to paging

+ (one access to get info from page table, plus one access to get data
from memory)
+ New solution: use a special cache (called a Translation Lookaside
Buffer (TLB)) to cache page table entries
a TLB consists of two parts key (page number) and value (frame number)

page lookup in all TLBs can be done in one step
8

Virtual memory
Virtual memory is the technique that allows to execute
processes that may not be completely in physical memory

can be implemented by:
+ demand paging (only the necessary pages are brought in)
+ segmentation (only the segments that are currently in use are
brought in)
demand paging
+ while not in use the pages are stored on a disk - backing store

« the page table indicates whether the page is in memory or in
backing store

« if a process requests a page that is not in memory
- a page fault trap is generated and control is passed to OS

-~ the faulted process is suspended (another process may be
started while it waits) and a request to fetch the page is
generated

- when page is in memory the page table is updated and the
instruction that caused page fault is re-executed

. . 10
virtual memory is transparent to user processes

Handling Page Faults

the page fault handler must be able to recover enough of the
machine state (at the time of the fault) to continue executing the
program
the PC is usually incremented at the beginning of the instruction
cycle

« if OS / hardware doesn't do anything special, faulting process will

execute the next instruction (skipping faulting one)

with hardware support:

« test for faults before executing instruction (IBM 370)

« instruction completion — continue where you left off (Intel 386...)

« restart instruction, undoing (if necessary) whatever the instruction
has already done (PDP-11, MIPS R3000, DEC Alpha, most
modern architectures)

12

Starting a new process Page replacement

« Toimprove I/O utilization the OS over-allocates the main

. processes are started with 0 or more of their virtual pages in memory - if sum of address space of all executing processes
physical memory, and the rest on the disk is greater than the physical memory
. page selection — when are new pages brought into physical = What happens if a process requests a page and there are no free frames?
memory? . to (partially) remedy the situation a clean/dirty bit is associated with every
« prepaging — pre-load enough to get started: code, static in-memory page
data, one stack page (DEC ULTRIX) « if the page has been modified - it's dirty and has to be written to disk
+ demand paging — start with O pages, load each page on « if the page has not been modified - (it is the same as it's copy in the
demand (when a page fault occurs) (most common backing store) - it can be just discarded and replaced
approach) « What if we still need to select a page to replace? The OS has to evict
- disadvantage: many (slow) page faults when program (remove) a page from memory to backing store
starts running . Replacement strategies
= demand paging works due to the principle of locality of « FIFO - simplest to implement, performance is not always good
reference « Optimal - replace the page that will not be used for the longest period
+ Knuth estimated that 90% of a program’s time is spent in of time - cannot be implemented (requires future knowledge)
10% of the code + LRU - replace the least recently used page

Performance of demand paging Page replacement strategies

« effective access time for demand-paged memory can be

user memory pool
« Start after the

- Clear the R bit periodically, such as every clock interrupt

computed as: FIFO [alelclalBlD[AlD]B[C]B
eacc = (1-p)(macc) + (p)(pfault) szg ; . Assumptions: 4
where: frame 3 pages, 3 frames
p = probability that page fault will occur b ‘

- h = Page references:
macc memory access tlmg, ABCABDADBCA
pfault = time needed to service page fault optmal (AT |clAlBIDIAIDIBICI|B

« with typical numbers: frame 1
eacc = (1-p)(100) + (p)(25,000,000) = 100 + (p)(24,999,900) frame 2
« Ifpis 1in 1000, frame 3
eacc =25,099.9ns (250 times slower!)
+ To keep overhead under 10%, LRU
110 > 100 + (p)(24,999,900) rame 1 A.B|CIAIBID AIDIB)CIE
- p must be less than 0.0000004 frame 2
-~ less than 1 in 2,500,000 memory accesses must page fault! frame 3
15 16
. Second_ H’:-:"-l' s weae pamm
N 5 bt)
Implementing LRU chance S e : L;—
. A perfect implementation would be something like this: rep lace- I " ¥
+ Associate a clock register with every page in physical memory ment o] [&
+ Update the clock value at every access (%Isg gnk K3
« During replacement, scan through all the pages and find the one with) (reference) bit as ,:',] 1| | [&
the lowest value in its clock register before *
+ What's wrong with all this implementation? . On a page fault, ' |]
= Simple approximations: circle around E ¥ :
« Not-recently-used (NRU) the “clock” of all D 2 | |__
- Use an R (reference) bit, and set it whenever a page is referenced pages in the - i
x
e

- Choose any page with a clear R bit to evict page :l 5
- there is overhead on clearing the bits and the picture may not be examined last "
good enough - additional bits may be needed time Ry oy

« Ifthe R bit for the page is set, clear it
« Ifthe R bit for the page is clear, replace that page and set the bit

17 « Canitloop forever? What does it mean if the “hand” is moving slowly?2s
...if the hand is moving quickly

Frame Allocation Thrashing

« How many frames does each process get (M frames, N « Consider what happens when memory gets
processes)? overcommitted:
+ At least 2 frames (one for instruction, one for data), maybe « After each process runs, before it gets a chance to run
more... again, all of its pages may get paged out
& Maximum is number in physical memory « The next time that process runs, the OS will spend a |ot of
. Allocation algorithms: time page faulting, and bringing the pages back in
« Equal allocation - each gets M/ N frames - All the time it's spending on paging is time that it's not
+ Proportional allocation - number depends on size and priority getting useful work done
= Which pool of frames is used for replacement? - With demand paging, we wanted a very large virtual

memory that would be as fast as physical memory, but
instead we're getting one that's as slow as the disk!

« This wasted activity due to frequent paging is called thrashing

+ Analogy — student taking too many courses, with too
much work due

+ Local replacement - process can only reuse its own frames
- predictable

+ Global replacement - process can reuse any frame (even if used
by another process)

- processes may be able to grow dynamically

Working Sets
« Thrashing occurs when the sum of all processes’
requirement is greater than physical memory

- Solution — use local page frame replacement, don't let processes
compete

« Doesn't help, as an individual process can still thrash

- Solution — only give a process the number of frames that it “needs”
« Change number of frames allocated to each process over time
« If total need is too high, pick a process and suspend it

= Working set (Denning, 1968) — the collection of pages that a process is
working with, and which must be resident in main memory, to avoid
thrashing

+ Always keep working set in memory
« Other pages can be discarded as necessary

« implementation - choose time T, pages that were accessed during time T
constitute a working set, the rest can be discarded, scan periodically to
update working set

- Unix: T - about one second; scans - every several milliseconds,;

