
1

Previous lecture review

n efficient memory management is
needed in various areas

n user process space
u internal - inside a process

• in stack segment
• in heap segment

u external - between user processes
n kernel memory management

2

Advanced Memory
Management Techniques

n Static vs. dynamic allocation
n resource map allocation
n power-of-two free list allocation
n buddy method allocation
n lazy buddy method allocation

3

n The kernel manages physical memory for both user
processes and itself
u user processes - virtual memory/paging (next lecture)
u kernel needs such as:

F process structures (PCBs/TCBs, etc.)
F file system management structures management
F network buffers and other communication structures for IPC

n The kernel subsystem that deals with kernel memory management
is called Kernel Memory Allocator (KMA)

n first Unix kernels allocated the these structures statically; what’s
wrong with this approach?
u can overflow
u inflexible (cannot be adjusted to concrete system’s needs)
u conservative allocation leads to wasting memory

n need dynamic kernel memory allocation!

What is there to manage?

4

Resource map
implementation
of with FF, BF
and WF

n The simplest dynamic
memory allocation KMA
uses resource map: a list
of <base,size> where
u base - start of free

segment
u size - size of free

segment
n KMA can use either of

u first fit
u best fit
u worst fit

n Unix uses FF for
kernel buffers

5

n advantages:
u easy to implement
u can allocate precise memory regions, clients can release parts of

memory
u adjacent free memory regions can be coalesced (joined) with

extra work
n disadvantages:

u the memory space gets fragmented
u linear search for available memory space
u resource map increases with fragmentation. what’s wrong with

that?
F more kernel resource are used for the map
F search time increases

u to coalesce adjacent regions map needs to be sorted - expensive
u hard to remove memory from the memory-mapped region

Analysis of resource map KMA

6

n A set of free buffer lists - each a power of two a.i.
32, 64, 128 … bytes

n each buffer has a one word (4 bytes) pointer
u when the buffer is free - the pointer shows the next free buffer
u when the buffer is used - it points to the size of the buffer

n the memory allocation requests are rounded up to the next power of 2
n when allocated - the buffer is removed from the list
n when freed - the buffer is returned to the appropriate free buffer list
n when list is empty KMA either allocates a larger buffer or delays request

Power-of-two free list KMA

used in Unix
to implement
user-level
malloc() and
free()

7

n Advantages:
u simple and fast (bounded worst-case performance) - no

linear searches
n Disadvantages:

u cannot release parts of buffers
u space is wasted on rounding to the next power of two

F (what type of fragmentation is that?)
u a word is wasted on the header - big problem for the

memory requests that are power-of-two
u can’t coalesce adjacent free buffers

Analysis of power-of-two KMA

8

n Combines buffer coalescing with power-of-two allocator
n small buffers are created by (repeatedly) halving a large buffer
n when buffer is split the halves are called buddies

u maintains the bitmap for the minimum possible buffer; 1 - allocated
2 - free

u maintains a list of buffer sized (powers of two)
n example, initially we have a block of 1024bytes

u allocate(256) - block is split into buddies of size 512
bytes - A and A’

u A is split into B
and B’ - size 256

u B allocated

Buddy KMA

9

n Allocate(128) - finds 128-
free list empty; gets B’
from 256-list and splits it
into C and C’ - size 128;
allocates C

n allocate(64) - finds 64-list
empty, gets C’ from 128-
list; splits it into D and D’ -
size 64, allocates D (see
picture on previous page)

n allocate(128) - removes
A’; splits it into E and E’;
splits E into F and F’,
allocates F

n release(C, 128) - see
picture on top

n release(D, 64) - coalesce
D, D’ to get C’, coalesce
C’ and C to get B’

Buddy
KMA(cont)

10

n advantages:
u coalescence possible
u possible dynamic modification of allocation region

n disadvantages:
u performance - coalescing every time possibly to split up

again; coalescing is recursive!
u no partial release

Analysis of buddy KMA

11

n coalescence delay - time it takes to check if the buddy is
free and coalesce

n buddy KMA - each release operation - at least one
coalescence delay

n if we allocate and deallocate same-size buffers - inefficient
n solution: coalesce only as necessary

u operation is fast when we don’t coalesce
u operation is extremely slow if we coalesce

n middle approach:
u we free the buffer making it available for reuse but not

for coalescing (not marked in bitmap)
u coalescing is done depending on the number of

available buffers of certain class:
F many (lazy state) - no coalescing necessary
F borderline (reclaiming state) - coalescing is needed
F few (accelerated state) - KMA must coalesce fast

Lazy buddy KMA

