
1

Memory management

n internal to process
u segments
u static allocation
u dynamic allocation

F allocation methods: stack and heap
F reclaiming: garbage collection

n external
u static relocation
u dynamic relocation

F swapping
F compaction

u paging (next lecture but one)

2

n by role in program:
u program instructions
u constants:

F pi, maxnum, strings used by printf/scanf
u variables:

F locals, globals, function parameters, dynamic storage (from
malloc or new)

F initialized or uninitialized
n by protection status (important for sharing data and code):

u readable and writable: variables
u read-only: code, constants

n addresses vs. data:
u must modify addresses if program is moved (relocation, garbage

collection)

Types of information
information stored in memory

3

n process’ memory is divided into logical segments (text, data, bss,
heap, stack)
u some are read-only, others read-write
u some are known at compile time, others grow dynamically as

program runs
n who assigns memory to segments?

u compiler and assembler generate an object file (containing code
and data segments) from each source file

u linker combines all the object files for a program into a single
executable object file, which is complete and self-sufficient

u loader (part of OS) loads an executable object file into memory
at location(s) determined by the operating system

u program (as it runs) uses new and malloc to dynamically
allocate memory, gets space on stack during function calls

Segments

4

n memory allocation
u static – done before run-time
u dynamic – done at run-time

n static allocation does not satisfy for all programming needs
u programmer may not know how much memory will be

needed when program runs
u OS doesn’t know in advance which procedures will be called

(would be wasteful to allocate space for every variable in
every procedure in advance)

u OS must be able to handle allocation for recursive
procedures (same name varables in different invocations)

n dynamic allocation requires two fundamental operations:
u allocate dynamic storage
u free memory when it’s no longer needed

Internal memory allocation

5

n stack
u good when allocation and freeing are somewhat predictable
u typically used:

F to pass parameters to procedures
F for allocating space for local variables inside a procedure
F for tree traversal, expression evaluation, parsing, etc.

u use stack operations: push and pop

u simple and efficient, but restrictive
u keeps all free space together in one place

n heap
u used when allocation and freeing are not predictable
u used for arbitrary list structures, complex data organization, etc.
u more general, less efficient, more difficult to implement
u system memory consists of allocated areas and free areas (holes)

Dynamic memory allocation methods

6

n fragmentation – free memory is spread in multiple places of
various sizes (fragments) which makes further allocation
difficult/impossible and thus wastes memory
u internal – free memory fragments are inside the allocation

units
u external – free memory fragments are outside the allocation

units
n arbitrary dynamic allocation/deallocation in heap leads to

fragmentation
u is this fragmentation internal or external?
u does stack allocation lead to fragmentation?
u how to reuse the fragments?

Fragmentation

7

n heap-based dynamic memory allocation techniques typically
maintain a free list, which keeps track of all the fragments
(holes)

n algorithms to manage the free list:
u first fit

F scan the list for the first hole that is large enough, choose that
hole

u best fit
F search free list at each allocation
F choose the hole that comes the closest to matching the request

size; any unused space becomes a new (smaller) hole
F when freeing memory, combine adjacent holes
F how to implement this efficiently?

u worst fit
F scan for the largest hole (hoping that the remaining hole will be

large enough to be useful)
u which is better?

Heap memory allocation

8

n when can memory be made available for reuse?
u when the programmer explicitly frees the memory
u any way to reclaim memory automatically?

F difficult if that item is shared (i.e., if there are multiple pointers
to it)

n implementing automatic reclamation: reference counts
u OS keeps track of number of outstanding pointers to each memory

item
u when count goes to zero, free the memory
u potential problems

F dangling pointers — have to make sure that everyone is
finished using the memory when it’s shared

F memory leak — must not “lose” memory by forgetting to free it
when appropriate (the pointer still points to it yet the memory is
not used)

Reclaiming memory

9

n storage isn’t explicitly freed by a free operation; programmer just
deletes (or reassigns) the pointers

n when OS needs more storage space, it recursively searches through
all the active pointers and reclaims memory that no one is using

n simplifies memory management for the application programmer, but it
is difficult to program the garbage collector

n often expensive — may use 20% of CPU time in systems that use it
u May spend as much as 50% of time allocating and automatically

freeing memory
n used in LISP, Java

Garbage collection

10

n put the OS in the highest
memory

n compiler and linker
assume each process
starts at address 0

n at load time, the OS:
u allocates the process

a segment of memory
in which it fits
completely

u adjusts the addresses
in the processes to
reflect its assigned
location in memory

Static external relocation

0

2200

2400

1200

A

OS

0

2200

2400

1200

A

OS

B

1900

address main
memory address

main
memory

11

Static
external
relocation

12

n problems with static relocation:
u safety: one process can access/corrupt another’s memory, can

even corrupt OS’s memory
u process cannot request more memory (why?)
u processes can not move after beginning to run (why would theny

need to?)
u used by MS-DOS, Windows, Mac OS

n alternative: dynamic relocation
u the basic idea is to change each memory address dynamically at

run-time
u this translation is aided by hardware — between the CPU and the

memory is a memory management unit (MMU) (also called a
translation unit) that converts the programs addresses to actual
addresses
F this translation happens for every memory reference the

process makes

Static external relocation (cont.)

13

n there are now two different views of the address space:
u physical address space (used by the OS only)

F it is as large as there is physical memory on the machine
u virtual (logical) address space (used by the process)

F can be as large as the instruction set architecture allows
F for now, we’ll assume it’s much smaller than the physical

address space
u Multiple processes share the physical memory, but each can has

its own virtual address space
n The OS and hardware must now manage two different addresses

spaces for each process

Dynamic relocation

14

Implementing dynamic relocation

n MMU protects address space, and translates virtual addresses
u Base register holds lowest virtual address of process, limit register

holds highest
u Translation:

physical address = virtual address + base
u Protection:

if virtual address > limit, then trap to the OS with an address
exception

+ >
base

(relocation)
register

limit
register

virtual address

physical address address error
exception —
trap to OS

MMU

15

Swapping

n

processes can be swapped out to make room
u OS swaps a process out by storing its complete state to disk
u OS can reclaim space used by ready or blocked processes

n When process becomes active again, OS must swap it back in
(into memory)
u With static relocation, the process must be replaced in the

same location
u With dynamic relocation, OS can place the process in any

free partition (must update the relocation and limit registers)
n Swapping and dynamic relocation make it easy to increase the

size of a process and to compact memory (although slow!)

16

Compaction

n Dynamic relocation leads to external fragmentation
- unused space is left between processes

n compaction - overcomes this problem by moving
the processes so that memory allocation is
contiguous

n in previous example we can compact the
processes to free up 256K of contiguous memory
space (enough to load additional process) by
moving the total of 416K of memory

n how is it done?
n can compaction be used with static relocation?
n is compaction efficient?

