Previous lecture overview

« Semaphores provide the first high-level synchronization
abstraction that is possible to implement efficiently in OS.
« This allows avoid using ad hoc Kernel synchronization
techniques like non-preemptive kernel

+ allows to implement in multiprocessors
« problems
« programming with semaphores is error prone - the code

Lecture 13: locks and
condition variables

« problems with semaphores

« locks and CVs
« definition and usage
+ solutions to synchronization problems
« implementation

is often cryptic:

- a semaphore combines the counting mechanism and
synchronization mechanism

What's wrong with semaphores?
« Besides other shortcomings programming with
semaphores is deadlock - prone

Semaphore=Lock+Condition Variable

= semaphore serves two purposes:
+ Mutual exclusion — protect shared data

P(fridge); V(fridge); Ahex ‘
if (noMIk){ if (noMIk){ ~ milk - in too much milk
buy milk; buy milk; -~ buffer in producer/consumer

noM | k=f al se; noM | k=f al se;

- shared resource in readers/writers
-~ forks in Dining philosophers

h 2 what' ith them? « temporal coordination of events (one thread waits for something, other
+ are these programs correct? what's wrong with them? thread signals when it's available)

- solution — new language constructs - stop the roommate from going to the store while you are out to get
+ (Conditional) Critical region milk

region vwhen B do S; variable v is a shared variable that can

only be accessed inside the critical region

Boolean expression B governs access

Statement S (critical region) is executed only if B is true;

otherwise it blocks until B becomes true

can prevent some simple programming errors but still

problematic 3

+ monitors (somewhat similar to locks)

} }
P(fridge); P(fridge);

- suspend producer when buffer is full, consumer - when empty
- what is the coordination in readers/writers and dining philosophers?
» idea — two separate constructs:
+ Locks — provide mutual exclusion
+ Condition variables — provide conditional synchronization

+ Like semaphores, locks and condition variables are language-
independent, and are available in many programming environments'

Locks Locks, why do we need anything else?

« Locks provide mutually exclusive
access to shared data:

+ Alock can be “locked” or Thread A Thread B

« Queue::Remove will only return

; : ; Queue: : Add(int *item{
an item if there’s already one in

| ock->Acquire();

c§|r|'e|3°‘ﬁefsy(“s§$eﬂ?§) acquire(milk); acquire(milk); the queue - . /* add itemto queue
tinlly it is unfocked if (noMilk) if (noMilk) « ifthe queue is empty, it might be */
initially i ‘|s un. ocke buy milk; buy milk; more desirable for | ock->Rel ease();

+ athread is said to have release(milk); release(milk); Queue::Remove to wait until }

(own) the lock if it successfully
executed acqui r e statement.

« If other threads attempt to acquire a lock - they
are suspended

+ to achieve mutually exclusive access to variables

there is something to remove

« Can'tjustgo to sleep - if it
sleeps while holding the lock, no
other thread can access the
shared queue, add an item to it,

Queue: : Remove() {
int *item
| ock->Acquire();

i | -
threads should access them only inside and wake up the sleeping thread >en'|p{ yg) ;]?eue
acquire/release statements « Solution: condition variables /* renove item
will let a thread sleep inside a from queue */
critical section, by releasing the 1

lock while the thread sleeps | ock- >Rel ease();
5 return(item; 6

Condition variables

« condition variable (CV) coordinates events
« three basic operations on CVs:
e vwait - blocks the thread and releases the associated lock
« signal -if threads are waiting on the lock, wake up one of
those threads and put it on the ready list; otherwise do nothing
+ broadcast —if threads are waiting on the lock, wake up all
of those threads and put them on the ready list; otherwise do
nothing
« problem: when a thread P wakes up another Q they are
technically both inside the protected area. Which thread is allowed
to proceed?
+ P (Hoare style) — seems “logical” but the awakened thread
may miss the condition
+ Q (Hansen style) — what to do with signaling thread?
« P proceeds but immediately releases the lock — can wake up
only one thread
« all these techniques are implemented and equivalent in power 7

Using locks and CVs for
readers/writers problem

condi tionvar wt, rdr;

int nr=0, nw=0; reader () {

lock Ik; acquire(lk);
. whi | e(nw>0)
witer() { vai t (rdr,1k);
acquire(lk); nr++:

while(nr>0 || nw>0)

! rel ease(lk);
wait(wt,lk);

/* performread */

nWH+; acquire(lk);
rel ease(lk); nr--;

/* performwite */ if(n’r::o)
acquire(lk); signal (wt);
nw - rel ease(lk);
signal (wt); }

broadcast (rdr);
rel ease(lk); . notice the use of br oadcast to

wake up all readers

is this a readers or writers preference solution?

Spinlock implementation

variant 1
voi d spin_lock (bool *s) {
while (testnset(*s))

Simplest implementation of
locks - set up a boolean variable
(*s) is by busy waiting and
constantly checking on it's value }
with atomic RMW instruction like \4j g spin_unl ock (bool *s) {
test&set (t est nset) *s=FALSE;
problem - test&set monopolizes }
memory access and degrades
system performance
solution - have two whi | e loops ~ Variant2
check by test&set once - if voi d spin_lock (bool *s) {
locked - check with regular read whil e (testnset(*s))
until unlocked M' le (*s)
what's the problem with both of } '
these solutions? voi d spin_unl ock (bool *s) {
Unfair! *s=FALSE;

} 12

Using locks and CVs for
producer /consumer problem

condi ti onvar *cv;
I ock *1k;

int il=0;
tntoaval ! locks and CVs

[+ producer */ . Associated with a data structure is

whi | e(1 o .
ach.i 3£(| K); both a lock and a condition variable
/* produce next */ « Before the program performs an
avai | ++

. . operation on the data structure,
signal (cv, lk); .
refease(lk); acquires the lock
} « If it needs to wait until another
/* consunmer */
whi l e(1){ into an appropriate state, it uses

acquire(lk); the condition variable to wait
if(avail ==0)
wait (cv, 1 k);
/* consune next */
avail --;
rel ease(lk);

Locks/CVs implementation

« the issues related to implementation of semaphores
and locks/CVs are similar

« spinlock - a locked process does not release CPU
but rather “spins” constantly checking the lock until
it opens

« sleeplock - a locked process blocks and is put back
on the ready queue only when the lock is open

Implementing CV using spinlocks

/* condition consists of:
list - waiting threads
listlock - lock protecting . .

operation on list*/ « the CV contains a list that

voi d wait(condition *c, X) U

lock *s){ operations on this list are
spi nl ock(c->listlock); protected by a spinlock
/* add self to list */
spi nunl ock(c->listlock);

unl ock(s); this spinlock - the internal CV

/* block current thread */ lockand s - the external

I ock(s): lock that is used in association
y e with the CV

<
=]

id signal (condition *c){

spi nl ock(c->listlock);

/* renove a thread from
list if list not enpty */

spi nunl ock(c->listlock);

/* make renoved thread
runnable */

« Unbounded producer/consumer with

it

operation puts the data structure

11

holds the waiting threads, the

= note the difference between

13

