
1

Previous lecture overview

n Semaphores provide the first high-level synchronization
abstraction that is possible to implement efficiently in OS.
u This allows avoid using ad hoc Kernel synchronization

techniques like non-preemptive kernel
u allows to implement in multiprocessors

n problems
u programming with semaphores is error prone - the code

is often cryptic:
F a semaphore combines the counting mechanism and

synchronization mechanism

2

Lecture 13: locks and
condition variables

n problems with semaphores
n locks and CVs

u definition and usage
u solutions to synchronization problems
u implementation

3

What’s wrong with semaphores?
n Besides other shortcomings programming with

semaphores is deadlock - prone

P(fridge); V(fridge);
if (noMilk){ if (noMilk){

buy milk; buy milk;
noMilk=false; noMilk=false;

} }
P(fridge); P(fridge);

u are these programs correct? what’s wrong with them?
n solution — new language constructs

u (Conditional) Critical region
F region v when B do S; variable v is a shared variable that can

only be accessed inside the critical region
F Boolean expression B governs access
F Statement S (critical region) is executed only if B is true;

otherwise it blocks until B becomes true
F can prevent some simple programming errors but still

problematic
u monitors (somewhat similar to locks)

4

Semaphore=Lock+Condition Variable
n semaphore serves two purposes:

u Mutual exclusion — protect shared data
F milk - in too much milk
F buffer in producer/consumer
F shared resource in readers/writers
F forks in Dining philosophers

u temporal coordination of events (one thread waits for something, other
thread signals when it’s available)
F stop the roommate from going to the store while you are out to get

milk
F suspend producer when buffer is full, consumer - when empty
F what is the coordination in readers/writers and dining philosophers?

n idea — two separate constructs:
u Locks — provide mutual exclusion
u Condition variables — provide conditional synchronization
u Like semaphores, locks and condition variables are language-

independent, and are available in many programming environments

5

Locks
n Locks provide mutually exclusive

access to shared data:
u A lock can be “locked” or

“unlocked” (sometimes
called “busy” and “free”)
initially it is unlocked

u a thread is said to have
(own) the lock if it successfully
executed acquire statement.

u If other threads attempt to acquire a lock - they
are suspended

u to achieve mutually exclusive access to variables
threads should access them only inside
acquire/release statements

Thread A Thread B

acquire(milk); acquire(milk);
if (noMilk) if (noMilk)

buy milk; buy milk;
release(milk); release(milk);

6

Locks, why do we need anything else?

Queue::Add(int *item){
lock->Acquire();
/* add item to queue

*/
lock->Release();

}

Queue::Remove() {
int *item;
lock->Acquire();

if (!queue-
>empty()){

/* remove item
from queue */

}
lock->Release();
return(item);

}

n Queue::Remove will only return
an item if there’s already one in
the queue

n if the queue is empty, it might be
more desirable for
Queue::Remove to wait until
there is something to remove

n Can’t just go to sleep - if it
sleeps while holding the lock, no
other thread can access the
shared queue, add an item to it,
and wake up the sleeping thread

n Solution: condition variables
will let a thread sleep inside a
critical section, by releasing the
lock while the thread sleeps

7

Condition variables
n condition variable (CV) coordinates events
n three basic operations on CVs:

u wait - blocks the thread and releases the associated lock
u signal - if threads are waiting on the lock, wake up one of

those threads and put it on the ready list; otherwise do nothing
u broadcast — if threads are waiting on the lock, wake up all

of those threads and put them on the ready list; otherwise do
nothing

n problem: when a thread P wakes up another Q they are
technically both inside the protected area. Which thread is allowed
to proceed?
u P (Hoare style) – seems “logical” but the awakened thread

may miss the condition
u Q (Hansen style) – what to do with signaling thread?
u P proceeds but immediately releases the lock – can wake up

only one thread
n all these techniques are implemented and equivalent in power 8

Using locks and CVs for
producer /consumer problem

n Unbounded producer/consumer with
locks and CVs

n Associated with a data structure is
both a lock and a condition variable
u Before the program performs an

operation on the data structure, it
acquires the lock

u If it needs to wait until another
operation puts the data structure
into an appropriate state, it uses
the condition variable to wait

conditionvar *cv;
lock *lk;
int avail=0;

/* producer */
while(1){

acquire(lk);
/* produce next */
avail++
signal(cv,lk);
release(lk);

}

/* consumer */
while(1){

acquire(lk);
if(avail==0)

wait(cv,lk);
/* consume next */
avail--;
release(lk);

}

9

Using locks and CVs for
readers/writers problem

n is this a readers or writers preference solution?

conditionvar wrt, rdr;
int nr=0, nw=0;
lock lk;

writer() {
acquire(lk);
while(nr>0 || nw>0)

wait(wrt,lk);
nw++;
release(lk);
/* perform write */
acquire(lk);
nw--;
signal(wrt);
broadcast(rdr);
release(lk);

}

reader() {
acquire(lk);
while(nw>0)

wait(rdr,lk);
nr++;
release(lk);
/* perform read */
acquire(lk);
nr--;
if(nr==0)

signal(wrt);
release(lk);

}

n notice the use of broadcast to
wake up all readers

11

n the issues related to implementation of semaphores
and locks/CVs are similar

n spinlock - a locked process does not release CPU
but rather “spins” constantly checking the lock until
it opens

n sleeplock - a locked process blocks and is put back
on the ready queue only when the lock is open

Locks/CVs implementation

12

n Simplest implementation of
locks - set up a boolean variable
(*s) is by busy waiting and
constantly checking on it’s value
with atomic RMW instruction like
test&set (testnset)

n problem - test&set monopolizes
memory access and degrades
system performance

n solution - have two while loops
check by test&set once - if
locked - check with regular read
until unlocked

n what’s the problem with both of
these solutions?

n Unfair!

void spin_lock (bool *s) {
while (testnset(*s))
;

}
void spin_unlock (bool *s) {

*s=FALSE;
}

void spin_lock (bool *s) {
while (testnset(*s))

while (*s)
;

}
void spin_unlock (bool *s) {

*s=FALSE;
}

variant 1

variant 2

Spinlock implementation

13

Implementing CV using spinlocks

n the CV contains a list that
holds the waiting threads, the
operations on this list are
protected by a spinlock

n note the difference between
this spinlock - the internal CV
lock and s - the external
lock that is used in association
with the CV

/* condition consists of:
list - waiting threads
listlock - lock protecting

operation on list*/

void wait(condition *c,
lock *s){

spinlock(c->listlock);
/* add self to list */
spinunlock(c->listlock);
unlock(s);
/* block current thread */
lock(s);
return;

}

void signal(condition *c){
spinlock(c->listlock);
/* remove a thread from
list if list not empty */

spinunlock(c->listlock);
/* make removed thread
runnable */

}

