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Previous lecture overview

n Concurrently executing threads often share data 
structures.

n If multiple threads are allowed to access shared data 
structures unhindered race condition may occur 

n To protect shared data structure from race conditions the 
thread’s access to it should be mutually exclusive

n MX may be implemented in software:
u for two threads - Peterson’s algorithm
u for multiple threads - bakery algorithm

n MX may be implemented using hardware support
n Writing efficient MX algorithms is not trivial and OS 

usually provides MX primitives for a programmer (as well 
as uses them internally)
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Lecture 10: Semaphores

n Definition of a semaphore
n using semaphores for MX
n semaphore solutions for common concurrency problems:

u producer/consumer
u readers/writers
u dining philosophers

n implementation of semaphores
u using spinlocks
u using test-and-set instructions
u semaphores without busy waiting

n evaluation of semaphores
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Semaphores —
OS support for mutual exclusion

n Semaphores were invented by Dijkstra in 1965, and can be thought 
of as a generalized locking mechanism. 

n semaphore supports two atomic operations
P / wait and V / signal. The atomicity means that no two P or V 
operations on the same semaphore can overlap

F The semaphore initialized to 1
F Before entering the critical section,

a thread calls “P(semaphore)”, or sometimes 
“wait(semaphore)”

F After leaving the critical section,
a thread calls “V(semaphore)”, or sometimes 
“signal(semaphore)”
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Semaphores — details
n P and V manipulate an integer variable the value of which 

is originally “1”
n Before entering the critical section, a thread calls “P(s)” or “wait(s)”

u wait (s):
F s = s – 1
F if (s < 0)

block the thread that called wait(s) on a queue associated with 
semaphore s

F otherwise
let the thread that called wait(s) continue into the critical section

n After leaving the critical section, a thread calls “V(s)” or “signal(s)”
u signal (s):

F s = s + 1
F if (s ≤ 0), then

wake up one of the threads that called wait(s), and run it so that 
it can continue into the critical section

n Bounded wait condition (not specified originally): if signal is continuously 
executed each individual blocked process is eventually woken up
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Using semaphores for MX
t1 () {

while (true) {
wait(s);
/* CS */
signal(s);
/* non-CS */

}
}

t2 ()   {
while (true) {

wait(s);
/* CS */
signal(s);
/* non-CS */

}
}

n The semaphore s is 
used to protect critical section CS

n before entering CS  a thread executes  
wait(s)

n by definition of wait it:

u decrements s
u checks if s is less than 0; if it is 

then the thread is blocked. If not 
then the thread proceeds to CS 
excluding the other from reaching it

n after executing CS the thread does 
signal(s)

n by definition of signal it:
u increments s

u checks if s≤0; if it is then the 
other thread is woken up
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Semaphore values

n Semaphores (again):
wait (s): signal (s):
s = s – 1 s = s + 1

if (s < 0) if (s ≤ 0)
block the thread wake up & run one of
that called wait(s) the waiting threads

otherwise
continue into CS

n Semaphore values:
u Positive semaphore = number of (additional) threads that can be 

allowed into the critical section
u Negative semaphore = number of threads blocked (note — there’s 

also one in CS)
u Binary semaphore has an initial value of 1
u Counting semaphore has an initial value greater than 1
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“Too much milk” with semaphores
Too much milk

Thread A Thread B________      

P(fridge); P(fridge);
if (noMilk){ if (noMilk){

buy milk; buy milk;
noMilk=false; noMilk=false;

} }
V(fridge); V(fridge);

u “fridge” is a semaphore initialized to 1, noMilk is a shared variable

Execution:
After: s queue A     B    

1
A: P(fridge); 0 in CS
B: P(fridge); -1 B in CS waiting
A: V(fridge); 0 finish ready, in CS
B: V(fridge); 1 finish
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Producer/consumer problem

n bounded buff holds items added 
by producer and removed by 
consumer

n this variant – single producer, single 
consumer, producer and consumer 
have to have exclusive access to the 
buffer

n p - item generated by producer
n c - item utilized by consumer
n mutex - protects buffer

manipulations
n empty - if open - producer may 

proceed
n full - if open - consumer may 

proceed

int p, c, buff[B],
front=0, rear=0;
semaphore empty(B), 

full(0), 
mutex(1);

producer() {
while (true) {

/* produce p */
wait(empty);
wait(mutex);
buff[rear]=p;
rear=(rear+1) % B; 
signal(mutex);
signal(full);

}
}

consumer () {
while (true) {

wait(full);
wait(mutex);
c=buff[front];
front=(front+1) % B;
signal(mutex);
signal(empty);
/* consume c */

}
}
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Readers/writers problem
n Readers and writers 

perform operations concurrently on a 
certain item

n writers cannot concurrently access 
items, readers can

n readcount - number of readers 
wishing to access /accessing the item

n mutex - protects manipulation with 
readcount

n wrt - writer can get to item if open

n two version of this problem:
u readers preference - if reader 

wants to get to item - writers wait
u writers preference - if writer wants 

to get to item - readers wait
n which version is this code?

int readcount;
semaphore wrt(1),mutex(1);

writer() {
wait(wrt);
/* perform write */
signal(wrt);

}

reader() {
wait(mutex);
readcount++;
if(readcount==1)

wait(wrt);
signal(mutex);
/* perform read */
wait(mutex);
readconut--;
if(readcount==0)

signal(wrt);
signal(mutex);
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Dining philosophers problem
n The problem was first defined and solved by Dijkstra

in 1972: five philosophers sit at the table and alternate 
between thinking and eating from a bowl of spaghetti 
in the middle of the table. They have five forks. A 
philosopher needs 2 forks to eat. Picking up and 
laying down a fork is an atomic  operation. 
Philosophers can talk (share variables) only to their 
neighbors 

n Objective: design an algorithm to ensure
that any “hungry” philosopher 
eventually eats 

n one solution - protect each fork by 
a semaphore. 

n what’s wrong with this solution?
u there is a possibility of deadlock
u fix: make odd philosophers

pick even forks first
u can we use the bakery algorithm?

semaphore fork[5](1);
philosopher(int i) {

while(true){
wait(fork[i]);
wait(fork[(i+1) % 5]);
/* eat */
signal(fork[i]);
signal(fork[(i+1) % 5)]);
/* think */

}
}
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Two versions of Semaphores

n Semaphores from last time (simplified):
wait (s): signal (s):
s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up one of
that called wait(s) the waiting threads

otherwise
continue into CS

n "Classical" version of semaphores:
wait (s): signal (s):
if (s ≤ 0) if (a thread is waiting)

block the thread wake up one of
that called wait(s) the waiting threads

s = s – 1 s = s + 1
continue into CS

n Do both work?  What is the difference?
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Implementing semaphores: 
busy waiting (spinlocks)

n idea: inside wait
continuously check the 
semaphore variable (spins) 
until unblocked

n Problem: wait and signal 
operations are not atomic

wait(semaphore s) {
while (s <= 0)

; /* do nothing */
s--;

}

signal(semaphore s) {
s++;

}
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Implementing semaphores: 
busy waiting (spinlocks)

n adv: may be efficient on 
multiprocessors – no need for 
context switch

n disadvantages
§ does not support bounded wait 

condition
§ waiting thread wastes time busy-

waiting (doing nothing useful, 
wasting CPU time)
§ how long can a thread wait?

§ can interfere with timer 
(interrupts)

wait(semaphore s) {
/* disable interrupts */
while (s <=0)

; /* do nothing */
s--;
/* enable interrupts

}

signal(semaphore s) {
/* disable interrupts */
s++;
/* enable interrupts */

}
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Read-modify-write (RMW) 
instructions

n RMW instructions atomically read a value 
from memory, modify it, and write the new 
value to memory
u Test&set — on most CPUs
u Exchange — Intel x86 — swaps 

values between register and memory
u Compare&swap — Motorola 68xxx —

read value, if value matches value in 
register r1, exchange register r1 and 
value

u Compare,compare&swap - SPARC
n RMW is not provided by “pure” RISC 

processors!

int testnset(boolean *i){
if (*i==FALSE)

*i=TRUE;
return(FALSE);

else
return(TRUE);

}   
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Semaphores using hardware support

This is a partial implementation

If lock is free (lock==false), 
test&set atomically:
§ reads false, sets value to true,

and returns false
§ loop test fails, meaning lock is 

now  busy

If lock is busy, test&set atomically:
§ reads true and returns true
§ loop test is true, so loop continues 

until someone releases the lock

Why is this implementation incomplete?

Adv: ensures atomicity of operation

Dis: does not support bounded wait

bool lock=false;
wait(semaphore s){

while (testnset(lock)){
; /* do nothing */

while ( s <= 0 )
; /* do nothing */

s--;
lock=false;

}

signal(semaphore s){
while(testnset(lock))

; /* do nothing */
s++;
lock=false;

}
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Semaphores (almost) 
without busy waiting

n This is an incomplete implementation. 
Why?

n adv: 
u no busy waiting, 
u supports bounded wait

n dis: requires context switch

struct semaphore {
public:

int v;
struct queue q;

} *s;
thread *ct;

wait(s){
s->v--;
if(s->v < 0){

enqueue(ct,s->q);
block(ct);

}
}

signal(s){
thread *t;
s->v++;
if(s->v <= 0) {

t=dequeue(s->q);
wakeup(t);

}
}

*ct pointer to current thread
*s pointer to semaphore
v semaphore value

q queue of blocked threads waiting for
semaphore

block blocks thread
wakeup wakes up a thread
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Semaphores - evaluation

n Semaphores provide the first high-level synchronization 
abstraction that is possible to implement efficiently in OS.
u this allows avoid using ad hoc Kernel synchronization 

techniques like non-preemptive kernel
u allows to implement in multiprocessors

n problems
u programming with semaphores is error prone  - the code is 

often cryptic
u for signal and wait to be atomic on multiprocessor 

architecture - a low level locking primitives (like test&set 
instruction) need to be available

u efficient blocking and unblocking require context switch -
performance degradation

u no means of finding out whether the thread will block on 
semaphore


