
1

Lecture 9: Synchronization

n Concurrency examples and the need for
synchronization

n definition of mutual exclusion (MX)
n programming solutions for MX

u MX algorithm for 2 processes (Peterson’s
algorithm)

u MX algorithm for multiple processes (bakery
algorithm)

2

“Too much milk” example
Time You Your Roommate

3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery
3:15 Arrive home
3:20 Arrive at grocery Look in fridge, no milk
3:25 Buy milk, leave Leave for grocery
3:30
3:35 Arrive home Arrive at grocery
3:36 Put milk in fridge
3:40 Buy milk, leave
3:45
3:50 Arrive home
3:51 Put milk in fridge

3:51 Oh, no! Too much milk!!

n The problem here is that the lines:
Look in fridge, no milk through “Put milk in fridge

are not an atomic operation - an atomic operation cannot be
overlapped by another atomic operation

3

“running contest” example
Thread A Thread B

i = 0 i = 0
while (i < 10) while (i > –10)

i = i + 1 i = i – 1

print “A wins” print “B wins”
n Assumptions:

u Memory load and store are atomic
u Increment and decrement at not atomic

n Questions:
u Who wins?
u Is it guaranteed that someone wins?
u What if both threads have their own CPU, running concurrently at

exactly the same speed? Is it guaranteed that it goes on forever?
u What if they are sharing a CPU?

4

Synchronization problem of
concurrency
n Concurrency - simultaneous execution of multiple threads of

control
n concurrency appears in:

u mutiprogramming - management of multiple processes on a
uniprocessor architecture

u mutliprocessing - management of multiple processes on a
multiprocessor architecture

u distributed computing - management of multiple processes
on multiple independent computers

n Synchronization — using atomic (indivisible) operations to
ensure cooperation between threads

n race condition - the outcome of the multiple process execution
depends on the order of the execution of the instructions of the
processes

5

Mutual exclusion (MX)
n To avoid race conditions mutual exclusion is used:
n Mutual exclusion (MX) — ensures that only one thread does a particular

activity at a time — all other threads are excluded from doing that activity
n Critical section (CS)— code that only one thread can execute at a time

(e.g., code that modifies shared data)
n threads alternate between executing CS and non-CS. A thread

may execute non-CS code indefinitely but it spends only finite amount of
time within CS

n Solution must be fair, that is:
u Avoid starvation — if a thread starts trying to gain access to the critical

section, then it should eventually succeed
n Methods to enforce mutual exclusion

u Up to user — threads have to explicitly coordinate with each other
u Up to OS — OS provides support for mutual exclusion
u Up to hardware — hardware provides architectural support for mutual

exclusion

6

MX algorithm 1
t1 () {

while (true) {
while (turn != 1)

; /* do nothing */
CS
turn = 2;
non-CS

}
}

t2 () {
while (true) {

while (turn != 2)
; /* do nothing */

CS
turn = 1;
non-CS

}
}

n Threads take
turns entering CS.
u t1 checks if it’s her turn. It it

is not (turn!=1) then it
waits doing nothing

u if it is t1’s turn it proceeds
with it’s CS and setting turn
to 2 giving t2 an
opportunity to enter her CS

n advantages:
u enforces MX

n problems - unfair:
u processes must alternate in

CS requests, what if they
are executing with different
speeds? What if t2 does
not want to get into CS for
a while?

7

MX algorithm 2a

n Before entering CS thread
checks if the other is in CS
u t1_in_CS,t2_in_CS

indicate if corresponding
thread is in CS

n advantage - fair
n problem - no MX!
n After t1 decides that t2 is

not in CS it is already in CS.
Yet it takes time for t1 to set
its own flag t1_in_CS to true

t1 () {
while (true) {

while (t2_in_CS == true)
; /* do nothing */

t1_in_CS = true;
CS
t1_in_CS = false;
non-CS

}
}

t2 () {
while (true) {

while (t1_in_CS == true)
; /* do nothing */

t2_in_CS = true;
CS
t2_in_CS = false;
non-CS

}
} 8

MX algorithm 2b

n Let’s move the setting of the
t1_in_CS flag outside of
the neighbor’s flag checking

n advantage - MX
n problem - not fair!

u Both threads cannot get
to CS if they set their flags
at the same time!

u This condition is called
deadlock and we say that
threads may starve

t1 () {
while (true) {

t1_in_CS = true;
while (t2_in_CS == true)

; /* do nothing */
CS
t1_in_CS = false;
non-CS

}
}
t2 () {

while (true) {
t2_in_CS = true;
while (t1_in_CS == true)

; /* do nothing */
CS
t2_in_CS = false;
non-CS

}
}

9

MX algorithm 3
(Peterson’s alg.)

n Let’s join algs 1 and 2
n condition of while of t1 does

NOT hold (t1 is allowed to
proceed to CS) if:
u t2 is out of CS

(t2_in_CS != true)
u t1 is blocked on its while
(turn == 1):
t2 set turn to 1 after t2
executed: turn = 2

n Peterson’s alg. enforces MX

n Peterson’s alg. avoids deadlock:
t1 cannot be blocked when:

n t2 is in non-CS :
t2_in_CS == false

n t2 is in while: turn == 1

t1 () {
while (true) {

t1_in_CS = true;
turn = 2;
while (t2_in_CS == true &&

turn == 2)
; /* do nothing */

CS
t1_in_CS = false;
non-CS

}
}
t2 () {

while (true) {
t2_in_CS = true;
turn = 1;
while (t1_in_CS == true &&

turn == 1)
; /* do nothing */

CS
t2_in_CS = false;
non-CS

}
}

10

Multiple Process MX (bakery alg.)

n Bakery alg. is a
generalization of
Peterson’s alg. for n
processes.

n Each process has unique
identifier

n the process takes a
number when CS is
needed; in case of a tie
process ids are used

n the process with the
lowest number is allowed
to proceed

n why does it check that
choosing is not set when
trying to access CS?

int i; /* unique process id */
while (true) {

choosing[i]=true;
number[i]=max(number[0],…,

number[n-1])+1;
choosing[i]=false;
for (j=0; j<n; j++) {

while (choosing[j])
; /* do nothing */

while (number[j]>0 &&
(number[j]<number[i] ||
number[j]==number[i] &&
j<i))

; /do nothing */
}
CS
number[i] = 0;
non-CS

}

