Previous lecture review

« Out of basic scheduling techniques none is a clear
winner:

+ FCFS - simple but unfair

+ RR - more overhead than FCFS may not be fair

« SJF - optimal, but high overhead, starvation possible

+ SRF - optimal, even higher overhead, starvation possible
« combined techniques:

« priority scheduling

« multiple feedback scheduling
« all are incorporated in modern OS scheduler design

Non-Preemptive Kernel

« To prevent data structures (especially kernel structures)
corruption by simultaneous access by different
processes/threads we need to ensure mutual exclusion of
access

« classical approach
+ make kernel non-preemptive - process in kernel mode
cannot be suspended when it is in the middle of a shared
structure modification

« disable interrupts when vital structures are modified (see
Nachos lecture) - interrupt handler cannot corrupt shared
structures modified by kernel

« problems:
+ can be unfair/does not scale
« cannot be used for real-time scheduling
« cannot be used for multiprocessor systems

Analysis of classical UNIX CPU
scheduling

« advantages:
« simple (relatively) and effective
+ ok for general purpose, single processor, small
sized systems
« disadvantages:
« re-computing priorities every second is inefficient in
large systems
+ no response time guarantee
« priority inversion - a high priority process has to
wait for a lower priority process which is in kernel
space (non-preemptive kernel) - some kernel code
paths take several ms
+ applications do not have adequate control over
priority (only superuser can increase)

Lecture 8: Scheduling in modern OS

« non-preemptive kernel to avoid kernel data
corruption

« classical Unix (SVR3, 4.3BSD) scheduler design

« real-time requirements

« SVR4 scheduling improvements

« Solaris scheduling improvements

« multiprocessor scheduling

Classical Unix CPU Scheduling
(System V release 3(SVR3), 4.3BSD)
« policy:
+ multiple queues (32), each with a priority value - 0-127 (low value =
high priority):
- Kernel processes (or user processes in kernel mode) the lower
values (0-49) - kernel processes are not preemptive!
- User processes have higher value (50-127)
+ Choose the process from the occupied queue with the highest

priority, and run that process preemptively, using a timer (time slice
typically around 100ms)

- Round-robin scheduling in each queue
+ move processes between queues
- Keep track of clock ticks (60/second)

- add the number of clock ticks to processes (decaying processes)
in the ready queue

- Also change priority based on whether or not process has used
more than it's “fair share” of CPU time (compared to others)
« users can decrease (but not increase!) priority

Real-time scheduling

event occurs

interrupt processing |

process made runnable

—

« Soft real-time
capabilities are
needed for quality of
service sensitive
applications - video,
audio, multimedia,
virtual reality

l l « require bounded

dispatch latency, and
response time

nonpreemptive kernel
processing

time

context switch initiated

context switch

process is scheduled torun ~ ——

Mh}mn;ry.‘
e time

response ti

process responds to event

Reproduced from “Unix Internals’ by Uresh Vahalia

« dispatch latency - time from the moment the process becomes
runnable to the moment it begins to run

« response time = interrupt processing + dispatch latency +
real-time process execution 6



System V release 4 (SVR4)
scheduling

« Scheduling classes (in the order of priority):
« real-time - fixed priority and time slices
+ system - kernel
« time-sharing (default) - RR scheduling, dynamic priorities,
lower priority processes are given larger time slices (to
offset overall I/O favoring)
« possibility of adding other classes (dynamic loading of
scheduler implementations)
« on-event priority recompilation - priority changes on specific
events
« priority reduced when process uses up time slice
« priority upped if process blocks
« kernel preemptive in preemption points - points defined
where it is safe to preempt the kernel

Solaris Scheduling

« fully preemptive kernel, shared kernel structures
are protected by explicit synchronization
mechanisms

« kernel is multithreaded, interrupts are
implemented as threads - no need to change
interrupt level

« symmetric multiprocessor scheduling

« priority inheritance or priority lending (solves
priority inversion problem) - when a higher
priority thread is needs a resources used by a
lower priority thread - the higher priority thread
lends it's priority to the lower priority thread;
must be transitive!

« Does not have hard real-time capabilities

Analysis of SVR4 scheduling

« Advantages
« flexible, allows real-time, scalable
+ modifiable (allows to add classes)
« efficient priority computation
+ more balanced scheduling between 1/0
and CPU bound processes
« Problems
+ switching time sharing -> real-time is not
allowed - hand tuning required and not
always possible
+ kernel is not completely preemptible
+ no multiprocessor support

Multiprocessor scheduling in Solaris

one run queue
processors
communicate through cross-
) = 2] 75 processor interrupts
a example of multiprocessor
=S =S P -
130 115 scheduling (greater number -
(a) Tnitial situation higher priority):
Lhouriobe . T6, T7 blocked
. P1 unblocks T6, calls
scheduler to find proc. to run it
on,
. scheduler selects T3, and
about to be sends it cross-processor
scheduled on P3 interrupt
. P2 unblocks T7, calls
scheduler to find proc to run
. P2 needs to know that T6 is

(b) After T6 and T7 become runnable scheduled on P3! 10
Reproduced from “Unix Internals’ by Uresh Vahalia

El

N -

w

2 P3
cpu_chosen_Tevel = 130

I

dispatcher queves

o




