
1

Previous lecture review

n Out of basic scheduling techniques none is a clear
winner:
u FCFS - simple but unfair
u RR - more overhead than FCFS may not be fair
u SJF - optimal, but high overhead, starvation possible
u SRF - optimal, even higher overhead, starvation possible

n combined techniques:
u priority scheduling
u multiple feedback scheduling

n all are incorporated in modern OS scheduler design

2

Lecture 8: Scheduling in modern OS

n non-preemptive kernel to avoid kernel data
corruption

n classical Unix (SVR3, 4.3BSD) scheduler design
n real-time requirements
n SVR4 scheduling improvements
n Solaris scheduling improvements
n multiprocessor scheduling

3

Non-Preemptive Kernel
n To prevent data structures (especially kernel structures)

corruption by simultaneous access by different
processes/threads we need to ensure mutual exclusion of
access

n classical approach
u make kernel non-preemptive - process in kernel mode

cannot be suspended when it is in the middle of a shared
structure modification

u disable interrupts when vital structures are modified (see
Nachos lecture) - interrupt handler cannot corrupt shared
structures modified by kernel

n problems:
u can be unfair/does not scale
u cannot be used for real-time scheduling
u cannot be used for multiprocessor systems

4

Classical Unix CPU Scheduling
(System V release 3(SVR3), 4.3BSD)
n policy:

u multiple queues (32), each with a priority value - 0-127 (low value =
high priority):
F Kernel processes (or user processes in kernel mode) the lower

values (0-49) - kernel processes are not preemptive!
F User processes have higher value (50-127)

u Choose the process from the occupied queue with the highest
priority, and run that process preemptively, using a timer (time slice
typically around 100ms)
F Round-robin scheduling in each queue

u move processes between queues
F Keep track of clock ticks (60/second)
F add the number of clock ticks to processes (decaying processes)

in the ready queue
F Also change priority based on whether or not process has used

more than it’s “fair share” of CPU time (compared to others)
u users can decrease (but not increase!) priority

5

Analysis of classical UNIX CPU
scheduling

n advantages:
u simple (relatively) and effective
u ok for general purpose, single processor, small

sized systems
n disadvantages:

u re-computing priorities every second is inefficient in
large systems

u no response time guarantee
u priority inversion - a high priority process has to

wait for a lower priority process which is in kernel
space (non-preemptive kernel) - some kernel code
paths take several ms

u applications do not have adequate control over
priority (only superuser can increase)

6

Real-time scheduling

n Soft real-time
capabilities are
needed for quality of
service sensitive
applications - video,
audio, multimedia,
virtual reality

n require bounded
dispatch latency, and
response time

n dispatch latency - time from the moment the process becomes
runnable to the moment it begins to run

n response time = interrupt processing + dispatch latency +
real-time process execution

Reproduced from “Unix Internals” by Uresh Vahalia

7

System V release 4 (SVR4)
scheduling

n Scheduling classes (in the order of priority):
u real-time - fixed priority and time slices
u system - kernel
u time-sharing (default) - RR scheduling, dynamic priorities,

lower priority processes are given larger time slices (to
offset overall I/O favoring)

n possibility of adding other classes (dynamic loading of
scheduler implementations)

n on-event priority recompilation - priority changes on specific
events
u priority reduced when process uses up time slice
u priority upped if process blocks

n kernel preemptive in preemption points - points defined
where it is safe to preempt the kernel

8

Analysis of SVR4 scheduling

n Advantages
u flexible, allows real-time, scalable
u modifiable (allows to add classes)
u efficient priority computation
u more balanced scheduling between I/O

and CPU bound processes
n Problems

u switching time sharing -> real-time is not
allowed - hand tuning required and not
always possible

u kernel is not completely preemptible
u no multiprocessor support

9

Solaris Scheduling

n fully preemptive kernel, shared kernel structures
are protected by explicit synchronization
mechanisms

n kernel is multithreaded, interrupts are
implemented as threads - no need to change
interrupt level

n symmetric multiprocessor scheduling
n priority inheritance or priority lending (solves

priority inversion problem) - when a higher
priority thread is needs a resources used by a
lower priority thread - the higher priority thread
lends it’s priority to the lower priority thread;
must be transitive!

n Does not have hard real-time capabilities

10

Multiprocessor scheduling in Solaris
n one run queue
n processors

communicate through cross-
processor interrupts

n example of multiprocessor
scheduling (greater number -
higher priority):

1. T6, T7 blocked
2. P1 unblocks T6, calls

scheduler to find proc. to run it
on,

3. scheduler selects T3, and
sends it cross-processor
interrupt

4. P2 unblocks T7, calls
scheduler to find proc to run

5. P2 needs to know that T6 is
scheduled on P3!

Reproduced from “Unix Internals” by Uresh Vahalia

