
1

Previous lecture review

n Out of basic scheduling techniques none is a clear
winner:
u FCFS - simple but unfair
u RR - more overhead than FCFS may not be fair
u SJF - optimal, but high overhead, starvation possible
u SRF - optimal, even higher overhead, starvation possible

n combined techniques:
u priority scheduling
u multiple feedback scheduling

n all are incorporated in modern OS scheduler design
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Lecture 8: Scheduling in modern OS

n non-preemptive kernel to avoid kernel data 
corruption

n classical Unix (SVR3, 4.3BSD) scheduler design
n real-time requirements
n SVR4 scheduling improvements
n Solaris scheduling improvements
n multiprocessor scheduling
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Non-Preemptive Kernel
n To prevent data structures (especially kernel structures) 

corruption by simultaneous access by different 
processes/threads we need to ensure mutual exclusion of 
access

n classical approach 
u make kernel non-preemptive - process in kernel mode 

cannot be suspended when it is in the middle of a shared 
structure modification

u disable interrupts when vital structures are modified (see 
Nachos lecture) - interrupt handler cannot corrupt shared 
structures modified by kernel

n problems:
u can be unfair/does not scale
u cannot be used for real-time scheduling
u cannot be used for multiprocessor systems
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Classical Unix CPU Scheduling
(System V release 3(SVR3), 4.3BSD) 
n policy:

u multiple queues (32), each with a priority value - 0-127 (low value = 
high priority):
F Kernel processes (or user processes in kernel mode) the lower 

values (0-49) - kernel processes are not preemptive!
F User processes have higher value (50-127)

u Choose the process from the occupied queue with the highest 
priority, and run that process preemptively, using a timer (time slice 
typically around 100ms)
F Round-robin scheduling in each queue

u move processes between queues
F Keep track of clock ticks (60/second)
F add the number of clock ticks to processes (decaying processes) 

in the ready queue
F Also change priority based on whether or not process has used 

more than it’s “fair share” of CPU time (compared to others)
u users can decrease (but not increase!) priority
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Analysis of classical UNIX CPU 
scheduling

n advantages:
u simple (relatively) and effective
u ok for general purpose, single processor, small 

sized systems
n disadvantages:

u re-computing priorities every second is inefficient in 
large systems

u no response time guarantee
u priority inversion - a high priority process has to 

wait for a lower priority process which is in kernel 
space (non-preemptive kernel) - some kernel code 
paths take several ms

u applications do not have adequate control over 
priority (only superuser can increase)
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Real-time scheduling

n Soft real-time 
capabilities are 
needed for quality of 
service sensitive 
applications - video, 
audio, multimedia, 
virtual reality

n require bounded 
dispatch latency, and 
response time

n dispatch latency - time from the moment the process becomes 
runnable to the moment it begins to run

n response time = interrupt processing + dispatch latency + 
real-time process execution 
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System V release 4 (SVR4) 
scheduling

n Scheduling classes (in the order of priority):
u real-time - fixed priority and time slices 
u system - kernel
u time-sharing (default) - RR scheduling, dynamic priorities, 

lower priority processes are given larger time slices (to 
offset overall I/O favoring)

n possibility of adding other classes (dynamic loading of 
scheduler implementations)

n on-event priority recompilation - priority changes on specific 
events
u priority reduced when process uses up time slice
u priority upped if process blocks

n kernel preemptive in preemption points - points defined 
where it is safe to preempt the kernel
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Analysis of SVR4 scheduling

n Advantages
u flexible, allows real-time, scalable
u modifiable (allows to add classes)
u efficient priority computation
u more balanced scheduling between I/O 

and CPU bound processes
n Problems

u switching time sharing -> real-time is not 
allowed - hand tuning required and not 
always possible

u kernel is not completely preemptible
u no multiprocessor support
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Solaris Scheduling

n fully preemptive kernel, shared kernel structures 
are protected by explicit synchronization 
mechanisms

n kernel is multithreaded, interrupts are 
implemented as threads - no need to change 
interrupt level

n symmetric multiprocessor scheduling
n priority inheritance or priority lending (solves 

priority inversion problem) - when a higher 
priority thread is needs a resources used by a 
lower priority thread - the higher priority thread 
lends it’s priority to the lower priority thread; 
must be transitive!

n Does not have hard real-time capabilities
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Multiprocessor scheduling in Solaris
n one run queue
n processors 

communicate through cross-
processor interrupts

n example of multiprocessor 
scheduling (greater number -
higher priority):

1.  T6, T7 blocked
2. P1 unblocks T6, calls 

scheduler to find proc. to run it 
on, 

3. scheduler selects T3, and 
sends it cross-processor 
interrupt

4. P2 unblocks T7, calls 
scheduler to find proc to run

5. P2 needs to know that T6 is 
scheduled on P3!
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