
1

Lecture 7: Scheduling

n definitions, assumptions
n scheduling policy goals and metrics
n scheduling algorithms:

u First Come First Served (FCFS)
u Round Robin (RR)
u Shortest Job First (SJF)
u Shortest Remainder First (SRF)
u priority
u multilevel queue
u multilevel feedback queue

n Unix scheduling

2

Types of CPU schedulers
n The CPU scheduler (sometimes called the dispatcher or

short-term scheduler): selects a process from the ready
queue and lets it run on the CPU

n Types of schedulers:
u Non-preemptive

F Executes only when:
• Process is terminated
• Process switches from running to blocked

F simple to implement but unsuitable for time-sharing systems
u Preemptive

F Executes at times above, also when:
• Process is created
• Blocked process becomes ready
• A timer interrupt occurs

F More overhead, but keeps long processes from monopolizing CPU
F Must not preempt OS kernel while it’s servicing a system call (e.g.,

reading a file) or otherwise OS may end up in an inconsistent state

3

Scheduling: assumptions
n Assumptions:

u Assumes all processes are in memory (swapping and process
admission is handled by medium-term scheduler), and one of those
is executing on the CPU

u One process per user
u One thread per process
u Processes are independent, and compete for resources (including

the CPU)
n Processes the following cycle:

u compute for a while (on CPU)
u wait for some some I/O

n Processes can be loosely classified into:
u CPU-bound — does mostly computation (long CPU burst),

and very little I/O
u I/O-bound — does mostly I/O,

and very little computation (short CPU burst)
4

CPU scheduling policy

n CPU scheduler must decide:
u How long a process executes (if preemptive)
u In which order processes ready to run will execute

n User-oriented scheduling policy goals (behavior of the system as
perceived by the user):
u Minimize average response time (time from request received

until response starts)
u Minimize turnaround time (time from process start until

completion) - Execution time plus waiting time (in ready queue)
u Minimize variance of average response time

F Predictability is important
F Process should always run in (roughly) same amount of time

regardless of the load on the system

5

CPU scheduling policy (cont.)

n System-oriented scheduling policy goals:
u Performance related:

F Maximize throughput (number of processes that complete in
unit time)

F Maximize processor utilization (percentage of time CPU is
busy)

u Non-performance related:
F Fairness — in the absence of guidance from the user or the

OS, processes should be treated the same, and no process
should suffer starvation (being infinitely denied service)
May have to be less fair in order to minimize average
response time!

F Balance resources — keep all resources of the system
(CPU, memory, disk, I/O) busy
Favor processes that underuse stressed resources

6

First Come First Served (FCFS)

n Policy:
u Choose process from ready queue in the order of its

arrival, and run that process non-preemptively
F Early FCFS schedulers were overly non-preemptive:

the process did not relinquish the CPU until it was
finished, even when it was doing I/O

F Now, non-preemptive means the scheduler chooses
another process when the first one terminates or
blocks

n Implement using FIFO queue (add to tail, take from head)
n Used in Nachos (as distributed)

7

FCFS examples

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

24 3 3

0 0 0

P1 P2 P3

0 24 27 30

average waiting time =
(0 + 24 + 27) / 3 = 17

Example 1

Process
(Arrival Order)

Burst Time

Arrival Time

P3 P2 P1

3 3 24

0 0 0

P1P3 P2

0 3 6 30

average waiting time =
(0 + 3 + 6) / 3 = 3

Example 2

8

FCFS evaluation

n Non-preemptive
n Response time — slow if there is a large variance in

process execution times
u If one long process is followed by

many short processes, short processes have to wait a
long time

u If one CPU-bound process is followed by
many I/O-bound processes, there’s a “convoy effect”
F Low CPU and I/O device utilization

n Throughput — not emphasized
n Fairness —penalizes short processes and I/O bound

processes
n Starvation — not possible
n Overhead — minimal

9

Round-robin scheduling (RR)

n Preemptive version of FCFS
n Policy:

u Define a fixed time slice (also called a time quantum)
u Choose process from head of ready queue
u Run that process for at most one time slice, and if it

hasn’t completed by then, add it to the tail of the ready
queue

u If that process terminates or blocks before its time slice
is up, choose another process from the head of the
ready queue, and run that process for at most one time
slice…

n Implement using:
u Hardware timer that interrupts at periodic intervals
u FIFO ready queue (add to tail, take from head)

10

RR examples

Process
(Arrival Order)

Burst Time

Arrival Time

P3 P2 P1

3 3 24

0 0 0
average waiting time =
(0 + 3 + 6) / 3 = 3

P3 P2

0 3

P1

30

P1 P1 P1 P1 P1

10 14 18 22 266

Example 2

average waiting time=
(4 + 7 + (10–4)) / 3 = 5.66

P1 P2 P3 P1 P1 P1 P1 P1

0 4 307 10 14 18 22 26

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

24 3 3

0 0 0

Example 1 time slice = 4

11

RR evaluation

n Preemptive (at end of time slice)
n Response time — good for short processes

u Long processes may have to wait n*q time units for
another time slice
F n = number of other processes,

q = length of time slice
n Throughput — depends on time slice

u Too small — too many context switches
u Too large — approximates FCFS

n Fairness — penalizes I/O-bound processes (may not use
full time slice)

n Starvation — not possible
n Overhead — low

12

Shortest Job First (SJF)

n Other names:
u Shortest-Process-Next (SPN)

n Policy:
u Choose the process that has the smallest next

CPU burst, and run that process non-
preemptively (until termination or blocking)

u In case of a tie, FCFS is used to break the tie
n Difficulty: determining length of next CPU burst

u Approximation — predict length, based on past
performance of the process, and on past
predictions

13

SJF examples

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

6 8 7

0 0 0

P4

3

0

average waiting time = (0 + 3 + 9 + 16) / 4 = 7

P4

0 3

P1 P3 P2

9 16 24

SJF

average waiting time = (0 + 6 + 14 + 21) / 4 = 10.25

P4

0 6

P1 P3P2

14 21 24

FCFS, same example

14

SJF evaluation

n Non-preemptive
n Response time — good for short processes

u Long processes may have to wait until a large
number of short processes finish

u Provably optimal — minimizes average waiting
time for a given set of processes (if preemption
is not considered)

n Throughput — high
n Fairness — penalizes long processes
n Starvation — possible for long processes
n Overhead — can be high (recording and estimating

CPU burst times)

15

Shortest Remaining Time (SRT)

n SRT is a preemptive version of SJF
n Policy:

u Choose the process that has the smallest next
CPU burst, and run that process preemptively…
F (until termination or blocking, or
F until a process enters the ready queue (either a

new process or a previously blocked process))
u At that point, choose another process to run if one

has a smaller expected CPU burst than what is left
of the current process’ CPU burst

16

SRT examples
Process

(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

8 4 9

0 1 2

P4

5

3

average waiting time = (0 + (8–1) + (12–3) + (17–2)) / 4 = 7.75

P4

0 8

P1 P3P2

12 17 26

arrival P2 P3 P4

SJF

P1 P2 P3 P4

average waiting time = ((0+(10–1)) + (1–1) + (17–2) + (5–3)) / 4 = 6.5
0 5 10 17 24

P4P2 P1 P3P1

arrival P2 P3 P4

P1 P2 P3 P4

SRT

17

SRT evaluation

n Preemptive (at arrival of process into ready queue)
n Response time — good

u Provably optimal wait time — minimizes
average waiting time for a given set of
processes

n Throughput — high
n Fairness — penalizes long processes

u Note that long processes eventually become
short processes

n Starvation — possible for long processes
n Overhead — can be high (recording and

estimating CPU burst times)

18

Priority Scheduling
n Policy:

u Associate a priority with each process
F Externally defined, based on importance, money, politics, etc.
F Internally defined, based on memory requirements, file

requirements, CPU requirements vs. I/O requirements, etc.
F SJF is priority scheduling, where priority is inversely

proportional to length of next CPU burst
u Choose the process that has the highest priority, and run that

process either:
F preemptively, or
F non-preemptively

n Evaluation
u Starvation — possible for low-priority processes

F Can avoid by aging processes: increase priority as they spend
time in the system

19

Multilevel queue scheduling
n Policy:

u Use several ready queues, and associate a different priority with
each queue

u Choose the process from the occupied queue that has the highest
priority, and run that process either:
F preemptively, or
F non-preemptively

u Assign new processes permanently to a particular queue
F Foreground, background
F System, interactive, editing, computing

u Each queue can have a different scheduling policy
F Example: preemptive, using timer

• 80% of CPU time to foreground, using RR
• 20% of CPU time to background, using FCFS

n Problem: processes at low level queues may starve

20

Multilevel feedback queue
n Policy:

u Use several ready queues, and associate a different priority with
each queue

u Choose the process from the occupied queue with the highest
priority, and run that process either:
F preemptively, or
F non-preemptively

u Each queue can have a different scheduling policy
u Allow scheduler to move processes between queues

F Start each process in a high-priority queue; as it finishes each
CPU burst, move it to a lower-priority queue

F Aging — move older processes to higher-priority queues
F Feedback = use the past to predict the future — favor jobs that

haven’t used the CPU much in the past close to SRT!

21

Unix CPU Scheduling
n Policy:

u Multiple queues (32), each with a priority value - 0-127 (low value
= high priority):
F Kernel processes (or user processes in kernel mode) the lower

values (0-49) - kernel processes are not preemptible!
F User processes have higher value (50-127)

u Choose the process from the occupied queue with the highest
priority, and run that process preemptively, using a timer (time
slice typically around 100ms)
F Round-robin scheduling in each queue

u Move processes between queues
F Keep track of clock ticks (60/second)
F Once per second, add clock ticks to priority value
F Also change priority based on whether or not process has

used more than it’s “fair share” of CPU time (compared to
others)

u users can decrease priority

