
1

Lecture 6 “Nachos”

n nachos overview
n directory structure
n nachos emulated machine
n nachos OS
n nachos scheduler
n nachos threads

2

Nachos overview

n Nachos is an instructional operating system developed at
UC Berkeley

n Nachos consists of two main parts:
u Operating system

F This is the part of the code that you will study and modify
F This code is in the threads, userprog, and filesys directories
F We will not study networking, so the network directory will not

be used
u Machine emulator — simulates a (slightly old) MIPS CPU,

registers, memory, timer (clock), console, disk drive, and network
F You will study this code, but will not be allowed to modify it
F This code is in the machine directory

n machine emulator is used for user programs only OS is executed on
the host machine directly

n The OS and machine emulator run together as a single UNIX process

3

Nachos distribution structure
Most of the subdirectories of code directory of Nachos

distribution contains a separate independent source code
for nachos with different features. Nachos is compiled When
Nachos is compiled, an executable called nachos is produced in
every subdirectory with corresponding features enabled.

Important directories:
n threads - implements threads interface: scheduling, context

switch, synchronization
n machine - implements i/o, interrupts, address translation, console

device, disk, etc. no binary is produced here.
n filesys - Nachos filesystem
n userprog - execution of user programs
n vm - virtual memory

4

Nachos — the operating system

n For now, we will mostly be concerned with code in the threads
directory

n main.cc, threadtest.cc — a simple test of the thread
routines.

n system.h, system.cc — Nachos startup/shutdown routines.
n thread.h, thread.cc — thread data structures and thread

operations such as thread fork, thread sleep and thread finish.
n scheduler.h, scheduler.cc — manages the list of threads

that are ready to run.
n list.h, list.cc — generic list management.
n utility.h, utility.cc — some useful definitions and

debugging routines
n switch.h, swtch.h - machine dependent context switch

routines in assembly

5

Nachos - the emulated
machine

n Code is in the machine directory
n machine.h, machine.cc — emulates the part of the machine

that executes user programs: main memory, processor registers,
etc.

n mipssim.cc — emulates the integer instruction set of a MIPS
R2/3000 CPU.

n interrupt.h, interrupt.cc — manages enabling and
disabling interrupts as part of the machine emulation.

n timer.h, timer.cc — emulates a clock that periodically causes
an interrupt to occur.

n stats.h — collects execution statistic

6

Nachos threads

n As distributed, Nachos does not support multiple processes, only
threads
u All threads share / execute the same code (the Nachos source

code)
u All threads share the same global variables (have to worry about

synch.)
n Threads can be in one of 4 states:

u JUST_CREATED — exists, has not stack, not ready yet
u READY — on the ready list, ready to run
u RUNNING — currently running (variable currentThread points to

currently running thread)
u BLOCKED — waiting on some external even, probably should

be on some event waiting queue

7

Nachos scheduler

n The Nachos scheduler is non-preemptive FCFS —
chooses next process when:
u Current thread calls Thread::Sleep() (to block (wait) on some

event)
u Current thread calls Thread::Yield() to explicitly yield the CPU

n main() (in threads/main.cc)
calls Initialize() (in threads/system.cc)
u which starts scheduler, an instance of class Scheduler (defined

in threads/scheduler.h and scheduler.cc)
n Interesting functions:

u Mechanics of running a thread:
F Scheduler::ReadyToRun() — puts a thread at the tail of the

ready queue
F Scheduler::FindNextToRun() — returns thread at the head

of the ready queue
F Scheduler::Run() — switches to thread 8

Scheduler’s code
Scheduler::Scheduler ()
{

readyList = new List;
}

void
Scheduler::ReadyToRun (Thread *thread)
{

DEBUG('t', "Putting thread %s on ready list.\n",
thread->getName());
thread->setStatus(READY);
readyList->Append((void *)thread);

}

Thread *
Scheduler::FindNextToRun ()
{

return (Thread *)readyList->Remove();
}

9

Scheduler’s code (cont.)
void
Scheduler::Run (Thread *nextThread)
{

Thread *oldThread = currentThread;

oldThread->CheckOverflow();
currentThread = nextThread;
currentThread->setStatus(RUNNING);

DEBUG('t', "Switching from thread \"%s\" to thread
\"%s\"\n",

oldThread->getName(), nextThread-
>getName());
SWITCH(oldThread, nextThread);
DEBUG('t', "Now in thread \"%s\"\n",

currentThread->getName());

if (threadToBeDestroyed != NULL) {
delete threadToBeDestroyed;
threadToBeDestroyed = NULL;

}
}

10

Working with non-preemptive
scheduler

n The Nachos scheduler is non-preemptive FCFS — chooses next
process when:
u Current thread calls Thread::Sleep() (to block (wait) on some

event)
u Current thread calls Thread::Yield() to explicitly yield the CPU

n Some interesting functions:
u Thread::Fork() — create a new thread to run a specified

function with a single argument, and put it on the ready queue
u Thread::Yield() — if there are other threads waiting to run,

suspend this thread and run another
u Thread::Sleep() — this thread is waiting on some event, so

suspend it, and hope someone else wakes it up later
u Thread::Finish() — terminate the currently running thread

11

Manipulating threads: fork()
void
Thread::Fork(VoidFunctionPtr func, int arg)
{

DEBUG('t',"Forking thread \"%s\" with
func = 0x%x, arg = %d\n",
name, (int) func, arg);

StackAllocate(func, arg);

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

scheduler->ReadyToRun(this);
(void) interrupt->SetLevel(oldLevel);

}

example:
Thread *t = new Thread("forked thread");
t->Fork(SimpleThread, 1)

12

Manipulating threads: yield()
void Thread::Yield ()
{

Thread *nextThread;

IntStatus oldLevel = interrupt->SetLevel(IntOff);

ASSERT(this == currentThread);
DEBUG('t', "Yielding thread \"%s\"\n", getName());

nextThread = scheduler->FindNextToRun();
if (nextThread != NULL) {

scheduler->ReadyToRun(this);
scheduler->Run(nextThread);

}
(void) interrupt->SetLevel(oldLevel);

}

example:
currentThread->Yield();

13

Manipulating threads: sleep()
void
Thread::Sleep ()
{

Thread *nextThread;

ASSERT(this == currentThread);
ASSERT(interrupt->getLevel() == IntOff);
DEBUG('t', "Sleeping thread \"%s\"\n",

getName());

status = BLOCKED;
while ((nextThread = scheduler->

FindNextToRun()) == NULL)
interrupt->Idle();

scheduler->Run(nextThread);
}

example:
currentThread->sleep();

