
1

“Process management 2” review
n the execution is broken down into processes; besides

a program (code) a process has a state which is
stored in process control block (PCB)

n the code for the user mode of the process is written by an
application programmer; in user mode process does useful things

n the code for the kernel mode of the process is written by an OS
designer and the collection of all this code is called an operating
system (it’s not a definition but a good way of looking at it)

n kernel side of a process coordinates process execution (creates
new processes, terminates current process, makes scheduling
decisions - decided what process to run next)

n when the next process to run is selected the kernel side of a
process calls the routine that does context switch; this routine
saves the state of the current process in it’s PCB, loads the state of
the next process from this process’ PCB and restarts it

n for the restarted process it appears that the context switch routine
has just finished

2

Lecture 5 “Threads”

n process as a unit of scheduling and a unit of
resource allocation

n processes vs. threads
n why use and what to program with threads
n two types of threads:

u user-level threads

u kernel-level threads

3

Two aspects of a process

n A process can be viewed two ways:
u A unit of resource ownership

F a process has an address space, containing program code and
data

F A process may have open files, may be using an I/O device, etc.
u A unit of scheduling

F the CPU scheduler dispatches one process at a time onto the
CPU

F associated with a process are values in the PC, SP, and other
registers

n Insight (~1988) — these two are usually linked, but they don’t have to be;
many recent operating systems attempt to separate these two aspects
(modern Unices, Windows NT):
u process = unit of resource ownership
u thread = unit of scheduling

4

Processes vs. threads
n process = unit of resource ownership

u a process (sometimes called a heavyweight process) has:
F address space
F program code
F global variables, heap, stack
F OS resources (files, I/O devices, etc.)

n thread = unit of scheduling
u a thread (sometimes called a lightweight process - watch the

meaning, the term is used for something else) is a single
sequential execution stream within a process

u a thread shares with other threads:
F address space, program code
F global variables, heap
F OS resources (files, I/O devices)

u a thread has its own:
F registers, Program Counter (PC)
F stack, stack pointer (SP)

5

Processes vs. threads (cont.)

n A thread is bound to a particular
process
u A process may contain multiple

threads of control inside it
u Threads can block, create

children, etc.
n All of the threads in a process:

u Share address space, program
code, global variables, heap, and
OS resources

u Execute concurrently (have its
own register, PC, SP, etc. values)

thread A

process' address space

thread B

stack

PC

stack

PC

program code

data access to file
access to printer

6

Why use threads
n intuitive, easy to program:

a process with multiple threads makes a great server
(e.g., printer server):
u have one server process, many “worker” threads if one thread

blocks (e.g., on a read), others can still continue executing
u threads can share common data; don’t need to use inter-process

communication
u can take advantage of multiprocessors

n efficiency of execution:
u cheap to create — only need a stack and storage for registers
u use very little resources — don’t need new address space,

global data, program code, or OS resources
u context switches are fast — only have to save / restore PC, SP,

and registers
n but… no protection between threads!

7

What to program with threads

n Good programs to multithread:
u Programs with multiple independent tasks (debugger needs

to run and monitor program, keep its GUI active, and display
an interactive data inspector and dynamic call grapher)

u Server which needs to process multiple requests
simultaneously

u Repetitive numerical tasks — break large problem, such as
weather prediction, down into small pieces and assign each
piece to a separate thread

n Programs difficult to multithread:
u Programs that don’t require any multiprocessing (99% of all

programs)
u Programs that require multiple processes (maybe one needs

to run as root)

8

User-level threads

user-level threads - provide a library of functions to allow user
processes to manage (create, delete, schedule) their own threads
OS is not aware of threads!

l advantages:
n doesn’t require modification to the OS
n simple representation — each thread is represented simply by

a PC, registers, stack, and a small control block, all stored in
the user process’ address space

n simple management — creating a new thread, switching
between threads, and synchronization between threads can all
be done without intervention of the kernel

n fast — thread switching is not much more expensive than a
procedure call

n flexible — CPU scheduling (among those threads) can be
customized to suit the needs of the algorithm

9

User-level threads (cont.)

n disadvantages:
l Lack of coordination between threads and OS kernel

F Process as a whole gets one time slice
F Same time slice, whether process has 1 thread or

1000 threads
F Also — up to each thread to relinquish control to other

threads in that process
l Requires non-blocking system calls (i.e., a possibly

multithreaded kernel)
F Otherwise, entire process will blocked in the kernel,

even if there are runnable threads left in the process

10

Kernel-level threads

n Kernel-level threads - kernel provides system calls to create and
manage threads
u advantages

l Kernel has full knowledge of all threads - scheduler may
choose to give a process with 10 threads more time than
process with only 1 thread

l Good for applications that frequently block (e.g., server
processes with frequent interprocess communication)

u disadvantages:
l Slow — thread operations are 100s of times slower than

for user-level threads
l Significant overhead and increased kernel complexity —

kernel must manage and schedule threads as well as
processes - requires a full thread control block (TCB) for
each thread

11

Multithreading Models

n Many-to-One(Solaris’ green threads) – all user threads are
mapped to one
kernel threads same problems as with user threads

n One-to-One (Windows NT/2000, OS/2) – one user thread to one
kernel thread
u programmer has better control of concurrency
u does not block the process on one thread blocking
u may potentially waste resources

n Many-to-Many – multiplexes many user-level threads to a
smaller or equal number of kernel-level threads
u allocation is specific to a particular machine (more k. threads

may be allocated on a multiprocessor)

12

Two-Level Thread Model
(Digital UNIX, Solaris, IRIX, HP-UX)

n User-level threads for
user processes
u “Lightweight

process” (LWP)
serves as a “virtual
CPU” where user
threads can run

n Kernel-level threads
for use by kernel
u One for each LWP
u Others perform

tasks not related to
LWPs

n OS supports
multiprocessor
systems

user-level

lightweight

task 1 task 2 task 3
thread

process

kernel
thread

kernel

CPU CPU CPU CPU

ULTs can be multiplexed on lighweight processes
ULTs can be “pinned “ to a processor
kernel thread may not have a corresponding LWP

