Lecture 5 (part2) : “Interprocess
communication

« reasons for process cooperation

« types of message passing

« direct and indirect message passing
« buffering

« client/server communication

« remote procedure calls

= remote method invocation

Message passing

syntax:
+ send(destination-process, message)
+ receive(source-process, message)

the communicating processes can be equal (peer to peer) or some
process can solicit certain services from another (client-server)

process can:

« block until the message is sent/received (blocking) - safer, easier to
think about, slower

+ proceed immediately (non-blocking) - faster, harder to code, riskier,
requires additional OS support
process can:

« block until the message it sent is received (synchronous) - easier to
code, deadlock prone, slower

« proceed without receipt confirmation (asynchronous) - faster,
requires separate message confirming receipt
process knows its party (direct) or does not know it as long as the
service it requests are performed (indirect) 4

Buffering

Link may have some capacity that determines the number of
message that can be temporarily queued in it

Zero capacity: (queue of length 0)
+ No messages wait

« Sender must wait until receiver receives the message — this
synchronization to exchange data is called a rendezvous

Bounded capacity: ~ (queue of length n)

« If receiver's queue is not full, new message is put on queue,
and sender can continue executing immediately

« If queue is full, sender must block until space is available in
the queue

Unbounded capacity: (infinite queue)
+ Sender can always continue

Cooperating processes

= Processes can cooperate with each other to accomplish a single
task.

« Cooperating processes can:

+ Improve performance by overlapping activities or performing
work in parallel

+ Enable an application to achieve a better program structure as
a set of cooperating processes, where each is smaller than a
single monolithic program
+ Easily share information
« lIssues:
+ How do the processes communicate?
+ How do the processes share data?

Direct vs. indirect communication

« Direct communication — explicitly name the process you're
communicating with

- send(destination-process, message)
- receive(source-process, message)
« Link is associated with exactly two processes
- Between any two processes, there exists at most one link
- The link may be unidirectional, but is usually bidirectional

« Indirect communication — communicate using mailboxes (ports)
owned by receiver

- send(mailbox, message)
- receive(mailbox, message)

Link is associated with two or more processes that share a
mailbox

- Between any two processes, there may be a number of links
- The link may be either unidirectional or bidirectional

Client-server commupnication
using message passing

reqlP_L\ ﬂues{ Server = process (or

Example: name
service, file
service, web
service

) collection of
client server processes) that
rovides a service
rePTy\ /reply P

Client — process that
network uses the service

« Request / reply protocol:
+ Client sends request message to server, asking it to perform
some service
+ Server performs service, sends reply message containing
results or error code

Client / Server Model us;inga
Remote procedure call (RPC) Remote Procedure Calls (RPCs)
unpack &
param Sy call
. RPCidea: serverg Each RPC
« hide message-passing I/0 from the programmer stub g server gi‘;‘:ﬁaﬂr%r(‘::é’si alls
+ look (almost) like a procedure call — but client invokes a ‘;k; return a cIienF: stub. which
procedure on a server gsults? i

builds a message
and sends itto a
server stub

« RPC invocation (high-level view):
« calling process (client) is suspended

« parameters of procedure are passed across network to e —
e ——
called process (server) network
« server executes procedure
« return parameters are sent back across network « The server stub uses the message to generate a local
« calling process resumes procedure call to the server

« If the local procedure call returns a value, the server stub builds
a message and sends it to the client stub, which receives it and
8 returns the result(s) to the client 9

RPC invocation step by step Generating stubs
« C/C++ may not be descriptive enough to allow stubs to
be generated automatically

1. Client procedure calls the client stub typedef struct { char add(int key, tuple value);
2. Client stub packs parameters into message and traps to the double item1; char remove(int key, tuple value);
kernel int item2; int query(int key, int number, tuple values[]);
char *annotation;
. Kernel sends message to remote kernel } tuple;
. Remote kernel gives message to server stub + Which are in, in-out, and out parameters?
) . »
. Server stub unpacks parameters and calls server + Exactly what size are parameters (e.g., integers, arrays)?

+ What does it mean to pass a pointer?

. « Using OSF's DCE Interface Definition Language (IDL) to specify
. Server stub packs result(s) in message and traps to kernel procedure signatures for stub generation:

3
4
5
6. Server executes procedure and returns results to server stub
7
8. Remote kernel sends message to local kernel

9

. . inerface db boolean add (long query (
. Local kernel gives message to client stub def (Fn] Ion? keY, in] :ong key,b
. X typedef struct in] tuple value in] long number,
10. Client stub unpacks result(s) and returns them to client Idouble item1; out, Sizle_issnum[?er)]
ong item2; tuple values|
[Stngng, ptr] booleian reTove (;
ISO_LATIN_1 in] long key,
10 *annotation; [in] lup?e vaYue 1
} tuple;)i

Remote Method Invocation

Java allows a process to invoke a method of a remote
object
done transparently to the application programmers
unlike RPC
« can invoke methods on remote objects
+ can pass objects as parameters
example: client executes statement
bool ean val = Server.sonmeMethod(parl, par2);
stub — proxy for the remote object on the client that marshals
parameters into a parcel consisting of name of method to be
invoked + serialized object parameters, unmarshals the return value
skeleton — server side “stub”
local objects are passed by copy-return, remote objects are passed

by reference (which allows the server to invoke remote objects via
RMI)

