
1

Lecture 5 (part2) : “Interprocess
communication”

n reasons for process cooperation
n types of message passing
n direct and indirect message passing
n buffering
n client/server communication
n remote procedure calls
n remote method invocation

2

Cooperating processes

n Processes can cooperate with each other to accomplish a single
task.

n Cooperating processes can:
u Improve performance by overlapping activities or performing

work in parallel
u Enable an application to achieve a better program structure as

a set of cooperating processes, where each is smaller than a
single monolithic program

u Easily share information
n Issues:

u How do the processes communicate?
u How do the processes share data?

4

Message passing
n syntax:

u send(destination-process, message)
u receive(source-process, message)

n the communicating processes can be equal (peer to peer) or some
process can solicit certain services from another (client-server)

n process can:
u block until the message is sent/received (blocking) - safer, easier to

think about, slower
u proceed immediately (non-blocking) - faster, harder to code, riskier,

requires additional OS support
n process can:

u block until the message it sent is received (synchronous) - easier to
code, deadlock prone, slower

u proceed without receipt confirmation (asynchronous) - faster,
requires separate message confirming receipt

n process knows its party (direct) or does not know it as long as the
service it requests are performed (indirect) 5

Direct vs. indirect communication

n Direct communication — explicitly name the process you’re
communicating with

F send(destination-process, message)
F receive(source-process, message)

u Link is associated with exactly two processes
F Between any two processes, there exists at most one link
F The link may be unidirectional, but is usually bidirectional

n Indirect communication — communicate using mailboxes (ports)
owned by receiver

F send(mailbox, message)
F receive(mailbox, message)

u Link is associated with two or more processes that share a
mailbox
F Between any two processes, there may be a number of links
F The link may be either unidirectional or bidirectional

6

Buffering

n Link may have some capacity that determines the number of
message that can be temporarily queued in it

n Zero capacity: (queue of length 0)
u No messages wait
u Sender must wait until receiver receives the message — this

synchronization to exchange data is called a rendezvous
n Bounded capacity: (queue of length n)

u If receiver’s queue is not full, new message is put on queue,
and sender can continue executing immediately

u If queue is full, sender must block until space is available in
the queue

n Unbounded capacity: (infinite queue)
u Sender can always continue

7

Client-server communication
using message passing

n Request / reply protocol:
u Client sends request message to server, asking it to perform

some service
u Server performs service, sends reply message containing

results or error code

client

request

reply

server

request

reply

kernelkernel

network

Server = process (or
collection of
processes) that
provides a service

Example: name
service, file
service, web
service

Client — process that
uses the service

8

Remote procedure call (RPC)

n RPC idea:
u hide message-passing I/O from the programmer
u look (almost) like a procedure call — but client invokes a

procedure on a server
n RPC invocation (high-level view):

u calling process (client) is suspended
u parameters of procedure are passed across network to

called process (server)
u server executes procedure
u return parameters are sent back across network
u calling process resumes

9

Client / Server Model using
Remote Procedure Calls (RPCs)

n The server stub uses the message to generate a local
procedure call to the server

n If the local procedure call returns a value, the server stub builds
a message and sends it to the client stub, which receives it and
returns the result(s) to the client

client

call

return

server

call

return

kernelkernel

network

client
stub

pack
parameters

unpack
results

unpack
parameters

pack
results

server
stub

Each RPC
invocation by a
client process calls
a client stub, which
builds a message
and sends it to a
server stub

10

RPC invocation step by step

1. Client procedure calls the client stub

2. Client stub packs parameters into message and traps to the
kernel

3. Kernel sends message to remote kernel

4. Remote kernel gives message to server stub

5. Server stub unpacks parameters and calls server

6. Server executes procedure and returns results to server stub

7. Server stub packs result(s) in message and traps to kernel

8. Remote kernel sends message to local kernel

9. Local kernel gives message to client stub

10. Client stub unpacks result(s) and returns them to client

11

Generating stubs
n C/C++ may not be descriptive enough to allow stubs to

be generated automatically

u Which are in, in-out, and out parameters?

u Exactly what size are parameters (e.g., integers, arrays)?

u What does it mean to pass a pointer?

n Using OSF’s DCE Interface Definition Language (IDL) to specify
procedure signatures for stub generation:

typedef struct {
double item1;
int item2;
char *annotation;

} tuple;

char add(int key, tuple value);
char remove(int key, tuple value);
int query(int key, int number, tuple values[]);

inerface db
{
typedef struct {

double item1;
long item2;
[string, ptr]
ISO_LATIN_1
*annotation;

} tuple;

boolean add (
[in] long key,
[in] tuple value

);

boolean remove (
[in] long key,
[in] tuple value

);

long query (
[in] long key,
[in] long number,
[out, size_is(number)]

tuple values[]
);

12

Remote Method Invocation

n Java allows a process to invoke a method of a remote
object

n done transparently to the application programmers
n unlike RPC

u can invoke methods on remote objects
u can pass objects as parameters

n example: client executes statement
boolean val = Server.someMethod(par1, par2);

n stub – proxy for the remote object on the client that marshals
parameters into a parcel consisting of name of method to be
invoked + serialized object parameters, unmarshals the return value

n skeleton – server side “stub”
n local objects are passed by copy-return, remote objects are passed

by reference (which allows the server to invoke remote objects via
RMI)

