
1

“Process management 1”
lecture review

n process is a program in execution - a unit of work for OS
n besides the code of the program a process has state (snapshot

of process’ execution) which consists of - procedure stack,
program’s static and dynamic data, etc.

n to keep track of process’ states OS maintains a structure called
process control block

n time-sharing OSes interleave execution of processes giving
users an illusion of simultaneous process execution

n OS may cycle through all processes giving each a chance to
use CPU (two state model) - inefficient since process may be
waiting on something and cannot use CPU

n five state model introduces blocked state where process is
waiting on some event to occur

2

Lecture 5: Process
Management 2

n Unix process management:
u process creation
u process scheduling

n scheduling queues
n types of schedulers
n context switch

3

Unix process creation

n One process can create another process, perhaps to do
some work for it
u The original process is called the parent
u The new process is called the child
u The child is an (almost) identical copy of parent (same code,

same data, etc.)
u The parent can either wait for the child to complete, or continue

executing in parallel (concurrently) with the child
n In UNIX, a process creates a child process using the system call

fork()
u In child process, fork() returns 0
u In parent process, fork() returns process id of new child

n Child often uses exec() to start another completely different
program

4

Example of UNIX Process Creation
#include <sys/types.h>
#include <stdio.h>
int a = 6; /* global (external) variable */
int main(void) {

int b; /* local variable */
pid_t pid; /* process id */
b = 88;
printf("..before fork\n");

pid = fork();
if (pid == 0) { /* child */

a++; b++;
} else /* parent */

wait(pid);

printf("..after fork, a = %d, b = %d\n", a, b);
exit(0);

}

aegis% fork
..before fork
..after fork, a = 7, b = 89
..after fork, a = 6, b = 88

example execution

5

n CPU cycles can still be wasted in 5 state model: all
processes in main memory can be blocked on I/O.

n solution: use virtual memory to admit more processes hoping that
they will keep CPU loaded

n blocked and ready states has to be split depending on whether a
process is swapped out on disk or in memory

n running state is also split depending on the mode: kernel or user
n Unix process states:

u created - just created not yet ready to run
u ready (memory) - ready as soon as kernel schedules it
u ready (disk) - ready, but needs to be swapped to memory
u asleep - blocked (memory) - waiting on event in memory
u asleep - blocked (disk) - waiting on event on disk
u running (kernel) - executing in kernel mode
u running (user) - executing in user mode
u zombie - process exited but left a record for parent to collect

Unix process states

6

Unix Process Scheduling

n process is running in user mode until an interrupt occurs or it executes a
system call

n if time slice expires the process is preempted and another is scheduled
n a process goes to sleep if it needs to wait for some event to occur and is

woken up when this event occurs
n when process is created decision is made whether to put it in memory or

disk

zombie

ready
kernel

running ready

asleep asleep

created

user
running

user mode kernel mode

disk

wakeup

swap out

wakeup

swap in
swap out

not enough
memory

enough
memory

fork

exit
sleep

schedule

return interrupt,
system call

interrupt

preempt

7

Scheduling queues

OS organizes all
waiting processes
(their PCBs) into a
number of queues:

n Queue for ready
processes

n Queue for
processes waiting
on each device
(e.g., mouse) or
type of event (e.g.,
message)

8

Types of Schedulers
n Long-term scheduler (job scheduler)

u Selects job from spooled jobs, and loads it into
memory

u Executes infrequently, maybe only when process
leaves system

u Controls degree of multiprogramming
F Goal: good mix of CPU-bound and I/O-bound

processes
u -sharing

systems
n Medium-term scheduler

u On time-sharing systems, does some of what long-
term scheduler used to do

u May swap processes out of memory temporarily
u May suspend and resume processes
u Goal: balance load for better throughput

9

Types of schedulers (cont.)
n Short-term scheduler (CPU scheduler)

u Executes frequently, about one hundred times per
second (every 10 ms)

u Runs whenever:
F Process is created or terminated
F Process switches from running to blocked
F Interrupt occurs

u Selects process from those that are ready to execute, allocates CPU
to that process

u Goals:
F Minimize response time (e.g., program execution, character to

screen)
F Minimize variance of average response time — predictability may

be important
F Maximize throughput

• Minimize overhead (OS overhead, context switching, etc.)
• Efficient use of resources

F Fairness — share CPU in an equitable fashion
10

Context switch

n Stopping one process and starting another is called a
context switch. The state of the old process needs
to be saved:
u When the OS stops a process, it stores the hardware registers

(PC, SP, etc.) and any other state information in that process’
PCB

u When OS is ready to execute a waiting process, it loads the
hardware registers (PC, SP, etc.) with the values stored in the
new process’ PCB, and restores any other state information

u Performing a context switch is a relatively expensive operation
(1-1000 us - compare with 2-10 ns speed of the CPU – several
thousand CPU cycles)
F However, time-sharing systems may do 100–1000 context

switches a second
F Why so often?
F Why not more often?

