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“Process management 1” 
lecture review

n process is a program in execution - a unit of work for OS
n besides the code of the program a process has state (snapshot 

of process’ execution) which consists of - procedure stack, 
program’s static and dynamic data, etc.

n to keep track of process’ states OS maintains a structure called
process control block

n time-sharing OSes interleave execution of processes giving 
users an illusion of simultaneous process execution

n OS may cycle through all processes giving each a chance to 
use CPU (two state model) - inefficient since process may be 
waiting on something and cannot use CPU

n five state model introduces blocked state where process is 
waiting on some event to occur
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Lecture 5: Process 
Management 2

n Unix process management:
u process creation
u process scheduling

n scheduling queues
n types of schedulers
n context switch
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Unix process creation

n One process can create another process, perhaps to do 
some work for it
u The original process is called the parent
u The new process is called the child
u The child is an (almost) identical copy of parent (same code, 

same data, etc.)
u The parent can either wait for the child to complete, or continue 

executing in parallel (concurrently) with the child
n In UNIX, a process creates a child process using the system call

fork( )
u In child process, fork( ) returns 0
u In parent process, fork( ) returns process id of new child

n Child often uses exec( ) to start another completely different 
program
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Example of UNIX Process Creation
#include <sys/types.h>
#include <stdio.h>
int a = 6; /* global (external) variable */
int main(void) {

int b; /* local variable */
pid_t pid; /* process id */
b = 88;
printf("..before fork\n");

pid = fork();
if (pid == 0) { /* child */

a++;  b++;
} else /* parent */

wait(pid);

printf("..after fork, a = %d, b = %d\n", a, b);
exit(0);

}

aegis% fork
..before fork
..after fork, a = 7, b = 89
..after fork, a = 6, b = 88

example execution

5

n CPU cycles can still be wasted in 5 state model: all 
processes in main memory can be blocked on I/O.

n solution: use virtual memory to admit more processes hoping that
they will keep CPU loaded

n blocked and ready states has to be split depending on whether a 
process is swapped out on disk or in memory

n running state is also split depending on the mode: kernel or user
n Unix process states:

u created - just created not yet ready to run
u ready (memory) - ready as soon as kernel schedules it 
u ready (disk) - ready, but needs to be swapped to memory
u asleep - blocked (memory) - waiting on event in memory
u asleep - blocked (disk) - waiting on event on disk
u running (kernel) - executing in kernel mode
u running (user) - executing in user mode
u zombie - process exited but left a record for parent to collect

Unix process states
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Unix Process Scheduling

n process is running in user mode until an interrupt occurs or it executes a 
system call

n if time slice expires the process is preempted and another is scheduled
n a process goes to sleep if it needs to wait for some event to occur and is 

woken up when this event occurs
n when process is created  decision is made whether to put it in memory or 
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Scheduling queues

OS organizes all 
waiting processes 
(their PCBs) into a 
number of queues:

n Queue for ready 
processes

n Queue for 
processes waiting 
on each device 
(e.g., mouse) or 
type of event (e.g., 
message)
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Types of Schedulers
n Long-term scheduler (job scheduler)

u Selects job from spooled jobs, and loads it into 
memory

u Executes infrequently, maybe only when process 
leaves system

u Controls degree of multiprogramming
F Goal:  good mix of CPU-bound and I/O-bound 

processes
u -sharing 

systems
n Medium-term scheduler

u On time-sharing systems, does some of what long-
term scheduler used to do

u May swap processes out of memory temporarily
u May suspend and resume processes
u Goal: balance load for better throughput
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Types of schedulers (cont.)
n Short-term scheduler (CPU scheduler)

u Executes frequently, about one hundred times per
second (every 10 ms)

u Runs whenever:
F Process is created or terminated
F Process switches from running to blocked
F Interrupt occurs

u Selects process from those that are ready to execute, allocates CPU 
to that process

u Goals:
F Minimize response time (e.g., program execution, character to 

screen)
F Minimize variance of average response time — predictability may 

be important
F Maximize throughput

• Minimize overhead (OS overhead, context switching, etc.)
• Efficient use of resources

F Fairness — share CPU in an equitable fashion
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Context switch

n Stopping one process and starting another is called a 
context switch. The state of the old process needs 
to be saved:
u When the OS stops a process, it stores the hardware registers 

(PC, SP, etc.) and any other state information in that process’ 
PCB

u When OS is ready to execute a waiting process, it loads the 
hardware registers (PC, SP, etc.) with the values stored in the 
new process’ PCB, and restores any other state information

u Performing a context switch is a relatively expensive operation 
(1-1000 us - compare with 2-10 ns speed of the CPU – several 
thousand CPU cycles) 
F However, time-sharing systems may do 100–1000 context 

switches a second
F Why so often?
F Why not more often?


