“Process management 1" Lecture 5: Process

lecture review Management 2
« process is a program in execution - a unit of work for OS
« besides the code of the program a process has state (snapshot = Unix process management:
of process’ execution) which consists of - procedure stack, « process creation

program’s static and dynamic data, etc.

« to keep track of process’ states OS maintains a structure called
process control block

« time-sharing OSes interleave execution of processes giving
users an illusion of simultaneous process execution

= OS may cycle through all processes giving each a chance to
use CPU (two state model) - inefficient since process may be
waiting on something and cannot use CPU

« five state model introduces blocked state where process is
waiting on some event to occur

+ process scheduling
« scheduling queues
« types of schedulers
« context switch

Unix process creation Example of UNIX Process Creation

#include <sys/types.h>

#include <stdio.h>

inta=6; /* global (external) variable */
int main(void) {

« One process can create another process, perhaps to do
some work for it

« The original process is called the parent

« The new process is called the child int b; /* local variable */ example execution
« The child is an (almost) identical copy of parent (same code, pid_t pid; /* process id */ S
oo aegis% fork
same data, etc.) b =88; " before fork
« The parent can either wait for the child to complete, or continue printf("..before forkin"); .after fork, a =7, b = 89
executing in parallel (concurrently) with the child i ..after fork,a=6,b =88
= In UNIX, a process creates a child process using the system call .p'd = fork(); il %
fork() if (pid == 0) { /* child */
; at+; b++;
« In child process, fork() returns 0 }else /* parent */
« In parent process, fork() returns process id of new child wait(pid);
« Child often uses exec() to start another completely different
program printf("..after fork, a = %d, b = %d\n", a, b);
exit(0);
3 ! 4
Unix process states Unix Process Scheduling
. CPU cycles can still be wasted in 5 state model: all user mode kernel mode

processes in main memory can be blocked on 1/0.

« solution: use virtual memory to admit more processes hoping that
they will keep CPU loaded

« blocked and ready states has to be split depending on whether a r‘ektu} :
process is swapped out on disk or in memory $ system call
« running state is also split depending on the mode: kernel or user

= Unix process states:
created - just created not yet ready to run

swap oul
wap in

swap out

*

isk

« ready (memory) - ready as soon as kernel schedulesit 4+ EeR
« ready (disk) - ready, but needs to be swapped to memory « process is running in user mode until an interrupt occurs or it executes a

+ asleep - blocked (memory) - waiting on event in memory system call

+ asleep - blocked (disk) - waiting on event on disk . if time slice expires the process is preempted and another is scheduled

« running (kernel) - executing in kernel mode = aprocess goes to sleep if it needs to wait for some event to occur and is

« running (user) - executing in user mode woken up when this event occurs

+ zombie - process exited but left a record for parent to collect s = when process is created decision is made whether to put it in memoryeor

disk

Scheduling queues

OS organizes all
waiting processes Aueys hescer PcB, PCB,
(their PCBs) intoa % |_fead 3 |

.
queue | tail registers registers |
number of queues: ¢ I =2
Queue for ready L] Pl
processes e %:
Queue for e EEREEE
processes waiting mag
on each device tape gﬁ:
(e.g., mouse) or i 5
type of event (e.g.,
message)

unito |
i iy

terminal [T Head 41— —

unito [tail

Types of schedulers (cont.)
Short-term scheduler (CPU scheduler)
+ Executes frequently, about one hundred times per

second (every 10 ms)

+ Runs whenever:

- Process is created or terminated
- Process switches from running to blocked
= Interrupt occurs

+ Selects process from those that are ready to execute, allocates CPU

to that process

+ Goals:

- Minimize response time (e.g., program execution, character to
screen)

- Minimize variance of average response time — predictability may
be important

- Maximize throughput
« Minimize overhead (OS overhead, context switching, etc.)
« Efficient use of resources

- Fairness — share CPU in an equitable fashion

Types of Schedulers

« Long-term scheduler (job scheduler)

+ Selects job from spooled jobs, and loads it into
memory

+ Executes infrequently, maybe only when process
leaves system

« Controls degree of multiprogramming

- Goal: good mix of CPU-bound and 1/0-bound
processes
. -sharing
systems
= Medium-term scheduler

+ On time-sharing systems, does some of what long-
term scheduler used to do

+ May swap processes out of memory temporarily
& May suspend and resume processes
+ Goal: balance load for better throughput

Context switch

Stopping one process and starting another is called a
context switch. The state of the old process needs
to be saved:

& When the OS stops a process, it stores the hardware registers
(PC, SP, etc.) and any other state information in that process’
PCB

+ When OS is ready to execute a waiting process, it loads the
hardware registers (PC, SP, etc.) with the values stored in the
new process’ PCB, and restores any other state information

« Performing a context switch is a relatively expensive operation
(1-1000 us - compare with 2-10 ns speed of the CPU — several
thousand CPU cycles)

- However, time-sharing systems may do 100-1000 context
switches a second
- Why so often?

- Why not more often?
10

