
1

“OS Structures” lecture review

n There are three main categories of tasks a modern OS has to
accomplish
u process management
u memory management
u disk/file management

n OS is a big and complex program; traditional monolithic kernel
design approach yields OSes that are fast but hard to develop,
modify and debug. Other approaches have been suggested:
u layering
u microkernel
u network computers

2

n looking up processes in Unix
n process creation and termination
n process state
n process control block
n process scheduling

u 2 - state model
u 5 - state model

Lecture 4: Process Management

3

n A process (sometimes called a task, or a job) is,
informally, a program in execution

n “Process” is not the same as “program”
u We distinguish between a passive program

stored on disk, and an actively executing
process
F Multiple people can run the same

program; each running copy corresponds
to a distinct process

u The program is only part of a process; the
process also contains the execution state

What is a process?

4

Listing Unix Processes

n list processes (HP UNIX):
u ps — my processes, little detail
u ps -fl — my processes, more detail

u ps -efl — all processes, more detail

n note user processes and OS processes

prompt% ps -efl
UID PID PPID C STIME TTY TIME COMMAND
root 0 0 0 Jan 19 ? 10:53 swapper
root 1 0 0 Jan 19 ? 0:17 init
root 2 0 0 Jan 19 ? 7:39 telnetd
…
mikhail 1546 1321 0 15:38:45 pts/17 3:31 netscape

5

Process creation and termination

n Reasons for process creation
u User logs on
u User starts a program
u OS creates process to provide a service (e.g., printer

daemon to manage printer)
u Program starts another process (e.g., netscape calls xv to

display a picture)
n Reasons for process termination

u Normal completion
u Arithmetic error, or data misuse (e.g., wrong type)
u Invalid instruction execution
u Insufficient memory available, or memory bounds violation
u Resource protection error
u I/O failure

6

Process state
n The process state consists of (at least):

u Code for the program
u Program’s static and dynamic data
u Program’s procedure call stack - contains temporary data -

subroutine parameters, return addresses, temporary variables
u Contents of general purpose registers
u Contents of Program Counter (PC) —address of next

instruction to be executed
u Contents of Stack Pointer (SP)
u Contents of Program Status Word (PSW) — interrupt status,

condition codes, etc.
u OS resources in use (e.g., memory, open files, connections to

other programs)
u Accounting information

å Everything necessary to resume the process’ execution if it is
somehow put aside temporarily

7

Process control block (PCB)

n For every process, the OS maintains a Process Control Block
(PCB), a data structure that represents the process and its state:
u Process id number
u Userid of owner
u Memory space (static, dynamic) - base/limit register contents
u Program Counter, Stack Pointer, general purpose registers
u Process state (running, not-running, etc.)
u CPU scheduling information (e.g., priority)
u List of open files
u I/O states, I/O in progress - list of I/O devices allocated to

process, list of open files, etc. status of I/O requests
u Pointers into CPU scheduler’s state queues (e.g., the waiting

queue)
u …

8

Interleaving execution of
processes

process
A

process
B

process
C

process
D

time

process A
process B
process C
process A
process B
process C
process A
process C
process A
process D
process C
process D
process C

time

From the user’s standpoint
processes multiple processes
are executed concurrently

In reality OS interleaves
the process execution

9

Two state process model

n CPU scheduling (round-robin)
u Queue is first-in, first-out (FIFO) list
u CPU scheduler takes process at head of queue, runs it on CPU

for one time slice, then puts it back at the tail of the queue

a process is either running
(executing CPU instructions or
not running

not
running runningenter

dispatch

pause

exit

state transition diagram

CPUenter dispatch

pause

exit
queue

queuing diagram
OS takes a ready to run
process and puts it in a queue
each process is allocated a
quantum of CPU time called
time slice

10

Process Transitions in
the Two-State Process Model

n When the OS creates a new process, it is initially placed in the
not-running state
u It’s waiting for an opportunity to execute

n At the end of each time slice, the CPU scheduler selects a new
process to run
u The previously running process is paused — moved from the

running state into the not-running state (at tail of queue)
u The new process (at head of queue) is dispatched — moved

from the not-running state into the running state
F If the running process completes its execution, it exits,

and the CPU scheduler is invoked again
F If it doesn’t complete, but its time is up, it gets moved into

the not-running state anyway, and the CPU scheduler
chooses a new process to execute

11

Blocked processes

n problem with two state model: process may waste
valuable CPU time waiting for something to happen; for example:
u Wait for user to type the next key
u Wait for output to appear on the screen
u Program tried to read a file — wait while OS decides which disk

blocks to read, and then actually reads the requested
information into memory

u Netscape tries to follow a link (URL) — wait while OS
determines address, requests data, reads packets, displays
requested web page

n solution: OS should not try to run blocked processes at all;
therefore the OS should differentiate between:
u Processes that are ready to run and are waiting their turn for

another time slice
u Processes that are waiting for something to happen (OS

operation, hardware event, etc.)
12

Five state process model

n the not-running state in the two-state model has now been split
into a ready state and a blocked state
u running — currently being executed
u ready — prepared to execute
u blocked — waiting for some event to occur (for an I/O

operation to complete, or a resource to become available,
etc.)

u new — just been created
u exit — just been terminated

ready runningadmit
dispatch

timeout
releasenew exit

blocked

event
wait

event
occurs

13

State transitions in five-state
process model
n new → ready

u Admitted to ready queue; can now
be considered by CPU scheduler

n ready → running
u CPU scheduler chooses that process

to execute next, according to some
scheduling algorithm

n running → ready
u Process has used up its current time slice

n running → blocked
u Process is waiting for some event to occur (for I/O operation

to complete, etc.)

n blocked → ready
u Whatever event the process was waiting on has occurred

Re Ru
A D

T
Rel

N E

B

WO

