
Previous lecture review

§ to parallelize execution each device is connected
to a controller; all controllers are joined by common
bus; communication between controllers and CPU is interrupt
based

§ the storage is hierarchical - fastest types of storage are accessed
first; to exploit locality of reference caching mechanism is used;
faster types of storage tend to be more expensive and less reliable

§ protection needs to be used in multiprogramming and timesharing
OSes:
u I/O protection
u memory protection
u CPU protection

Lecture 3: OS objectives and
organization

§ OS objectives
u process management
u memory management
u disk/file management
u networking, command interpreting

§ system calls - OS interface to application programs
§ OS design approaches:

u monolithic kernel
u layering
u microkernel
u virtual machine

Process management
§ OS manages many kinds of activities:

u user programs
u system programs: printer spoolers, name servers, file servers,

etc.
§ a running program is called a process

u a process includes the complete execution context (code, data,
PC, registers, OS resources in use, etc.)

u a process is not a program
• program - a sequence of instructions (passive)
• process - one instance of a program in execution (acitve);

u many processes can be running the same program and one
program may cause to create multiple processes

§ from OS viewpoint process is a unit of work; OS must:
u create, delete, suspend, resume, and schedule processes
u support inter-process communication and synchronization,

handle deadlocks

Memory management

§ primary (main) memory (RAM)
u provides direct access storage for CPU
u processes must be in main memory to execute

§ OS must:
u mechanics

• keep track of memory in use
• keep track of unused (“free”) memory
• protect memory space
• allocate, deallocate space for processes
• swap processes: memory <–> disk

u policies
• decide when to load each process into memory
• decide how much memory space to allocate to each

process
• decide when a process should be removed from memory

Disk management

§ The size of the disk is much greater than main memory and, unlike
main memory, disk is persistent (endures system failures and
power outages)

§ OS hides peculiarities of disk usage by managing disk space at low
level:
u keeps track of used spaces
u keeps track of unused (free) space
u keeps track of “bad blocks”

§ OS handles low-level disk functions, such as:
u schedules of disk operations
u and head movement

File management

§ disks provide long-term storage, but are
awkward to use directly

§ file - a logical named persistent collection of data maintained by
OS

§ file system - a logical structure that that is maintained by OS to
simplify file manipulation; usually directory based

§ OS must:
u create and delete files and directories
u manipulate files and directories - read, write, extend, rename,

copy, protect
u provide general higher-level services - backups, accounting,

quotas
§ note the difference between disk management and file system

management

System calls

§ system calls provide the interface between a process and the
operating system.

§ It is a way of transferring control to the OS so that it can carry out a
certain function for the process.

§ Example: a program that opens a text file and prints on the screen
uses the following system calls:
u open a file - if the file could not be opened - inform the program
u read a line of file
u print the line just read on the screen
u continue the last two system calls until the end of the file is

reached
u close file

Monolithic kernel OS design

§ advantages: speed and ease of operation
(everything is at hand)

§ disadvantages:
u hard to develop, maintain, modify and debug
u kernel gets bigger as the OS develops

the kernel is the
protected part of
the OS that runs in
monitor mode

critical OS data
structures and
device registers
are protected from
user programs
can use privileged
instructions

system services: shells, compilers,
printing, network access

system calls

user programs

hardware: terminals, I/O devices, memory

signals
terminals
character I/O

files
swapping
disk, tape

CPU scheduling
page replacement
virtual memory

terminal
controllers

device
controllers

memory
controllers

kernel

machine-
independent

machine-

dependent

Layered Design
§ divide OS into layers
§ each layer uses services provided by next lower layer

yet the implementation of these services are hidden from the upper
layer

§ THE Operating system layer structure:
u user programs
u buffering for input and output devices
u operator-console device driver
u memory management
u CPU scheduling
u hardware

§ advantages: easier development and implementation
§ disadvantages: not always easy to break down on layers, slower (each

level adds overhead)
u ex: CPU scheduler is lower than virtual memory driver (driver may

need to wait for I/O) yet the scheduler may have more info than can
fit in memory

§ examples: THE, OS/2

Microkernel

§ advantages: reliability, ease of development, modularity - parts can be
replaced and tailored to the architecture, user requirements etc.

§ disadvantages: slow
§ examples: Mach(US), MacOS X, Windows NT

User processes

file
system

CPU
scheduling

thread
system

network
support

paging

System processes

micro-
kernel

user
mode

kernel
mode

communication protection
low-level VM processor control

• small kernel implements
communication (usually
messages)
• when system services are
required microkernell calls
other parts of OS running in
user modes and passes the
request there

Virtual Machine
§ system calls can be considered an

enhancement of hardware’s instruction set
u extend further – virtual machine

§ each user task is provided with an abstract (virtual machine) which OS
+ hardware implement
u IBM – pioneered
u Java VM – modern example

§ JVM
u Java source code is translated into an architecture independent

java bytecode
u bytecode is executed by JVM
u JVM can be implemented purely in software or in hardware
u JVM verifies bytecode’s correctness and then either interprets

(tranlates the code into machines instructions one by one)
u or just-in-time (JIT) comples to optimize

adv. – portability at binary-level, security, greater language flexibility
dis. – speed(?)

