
1

Previous lecture review

n The development of the OSes followed the evolution of the
hardware; primary factor - dramatic increase in speed

n OS changed in size and sophistication from simple batch
systems to modern multi-tasking, multi-user systems.

n Additional features are being developed to accommodate
parallel, distributed and real-time systems

n Machine sharing and other improvements increased the number
of problems OS has to solve:
u complex task scheduling
u protection

u access to secondary storage (disks), networking, etc.

Operating system is a program that acts as an
intermediary between a user of computer and
computer hardware making the use of the machine
easy and more efficient

2

Lecture 2: Computer System
Structures

We go over the aspects of computer architecture
relevant to OS design

n overview
n input and output (I/O) organization
n storage structure
n protection

u I/O protection
u memory protection
u CPU protection

3

Computer system operation

n Controllers and CPU can execute concurrently
n memory is a critical resource - memory controller synchronizes

access to memory
n Device controller contains registers for communication with that

device

u Input register, output register — for data

u Control register — to tell it what to do
u Status register — to see what it’s done

CPU disk
controller

printer
controller

tape
controller

memory
controller

disk disk printer tape drives
memory

system bus

All devices are
attached to
controllers which
are joined by
system bus

4

Input/Output
n Synchronous I/O — CPU waits while I/O proceeds
n Asynchronous I/O — I/O proceeds concurrently with

CPU execution
u Software-polling (programmed) I/O:

F CPU starts an I/O operation, and continuously polls (checks) that
device until the I/O operation finishes

u Interrupt-driven I/O:
F Device controller has its own processor, and executes

asynchronously with CPU
• Device controller puts an interrupt signal on the bus when it

needs CPU’s attention
F When CPU receives an interrupt:

1.It saves the CPU state and invokes the appropriate interrupt
handler using the interrupt vector (addresses of OS routines to
handle various events)

2.Handler must save and restore software state (e.g., registers it
will modify)

3.CPU restores CPU state

5

Direct Memory Access,
Memory-Mapped I/O

n DMA
u I/O controller can transfer block of data to/from memory without

going through CPU
u OS allocates buffer in memory, tells I/O device to use that buffer
u I/O device operates asynchronously with CPU, interrupts CPU

when finished
u note, that DMA controller competes with CPU for memory access

n Memory-mapped I/O - convenient way of addressing I/O devices,
no specific I/O instructions are needed (used for video cards, ports)
u device registers are mapped to memory addresses, when

accessed the data moves directly to registers

Used for fast devices
i.e. disk, network

CPU

m em o ry

I/O commands

data data

I/O controller
interrupts

6

Storage Structures

n the faster the storage the more expensive (less reliable) it is
n this leads to the pyramidal structure of computer storage and caching
n locality of reference: programs tend to access the same info multiple

times; caching is based on this principle:
u when info is needed, look on this level
u if it’s not on this level, get it from the next slower level, and save a

copy here in case it’s needed again sometime soon

Re g is t e r s

Le vel 1 Ca che

Le ve l 2 Cache

Dis k (Virtua l Me m ory)

Dis k (File Sys t e m)

Backup Ta pe

Main Me mo ry

fast, small

slow,
large

bytes, 2-10ns (processor speed)

10s-100s KB, 2-10ns

100KBs-MBs, 40-60ns

MBs-GBs, 100s of ns

MBs-GBs, 10s of msecs

10s of GBs, 10s of msecs

10s of GBs, minutes

7

Magnetic disks
(secondary storage)

n Provide secondary storage for system (after main memory)
n Technology

u Covered with magnetic material
u Read / write head “floats” just above surface of disk
u Hierarchically organized as platters, tracks, sectors (blocks)

n Devices
u Hard (moving-head) disk — one or more platters, head

moves across tracks
u Floppy disk — disk covered with hard surface, read / write

head sits on disk, slower, smaller, removable, rugged
u CDROM — uses laser, read-only or read/write, high-density

8

Protection

n multiprogramming and timesharing require that the
memory and I/O of the OS and user processes be
protected against each other
u old OSes like DOS/Windows and MacOS do not support this kind

of protection
n two modes of CPU execution introduced: user mode and kernel mode

u in kernel / privileged / monitor mode, privileged instructions can:
F access I/O devices, control interrupts
F manipulate the state of the memory (page table, TLBs, etc.)
F halt the machine
F change the mode

u requires architectural support:
F mode bit in a protected register
F privileged instructions, which can only be executed in kernel

mode

9

I/O protection

n To prevent illegal I/O, or simultaneous I/O requests
from multiple processes, perform all I/O via privileged
instructions
u User programs must make a system call to the OS to perform I/O

n when user process makes a system call:
u a trap (software-generated interrupt) occurs, which causes:

F the appropriate interrupt handler to be invoked using the
interrupt vector

F Kernel mode to be set
u interrupt handler:

F Saves state
F Performs requested I/O (if appropriate)
F Restores state, sets user mode, and returns to calling program

10

Memory protection

n must protect:
u OS’s memory from user programs (can’t overwrite, can’t access)
u memory of one process from another process
u protect memory of user process from OS

n simplest and most common technique:
u Base register —smallest legal address
u Limit register — size of address range
u Base and limit registers are loaded by OS before running a

particular process
u CPU checks each address (instruction & data) generated in user

mode
F Any attempt to access memory outside the legal range results

in a trap to the OS

n Additional hardware support is provided for virtual memory

11

CPU protection

n Use a timer to prevent CPU from being hogged by
one process (either maliciously, or due to an error)
u Set timer to cause an interrupt after a specified period (small

fraction of a second) called time slice
u When interrupt occurs, control transfers to OS, which decides

which process to execute for next time interval (maybe the same
process, maybe another one)

n Also use timer to implement time sharing
u At end of each time interval, OS switches to another process
u Context switch = save state of that process, update Process

Control Block for each of the two processes, restore state of next
process

12

OS services and Architecture
support

OS Service Hardware Support
I/O interrupts

memory-mapped I/O
caching

Data access memory hierarchies

Protection system calls
kernel & user mode
privileged instructions
interrupts & traps
base & limit registers
timers

Scheduling & timers
Error recovery

