

Operating Systems cs4/53201

Instructor	Dr. Mikhail Nesterenko office: MCB 356
	email: mikhail@cs.kent.edu
	phone: 672-9109
office hours:	TU 5:30-6:45pm or by appointment
webpage:	http://www.cs.kent.edu/~mikhail/classes/os/
textbook:	Operating System Concepts by A. Silberschatz and P. B. Galvin

artwork reproduced with the permission of Joe Tucciarone

Lecture 1 Introduction, OS History

- notion of an operating system
- OS history
 - no OS
 - batch system
 - multiprogramming
 - multitasking
- features of modern Oses
- new OS research and development

What is operating system?

Operating system is a program that acts as an intermediary between a user of computer and computer hardware

- Hardware central processing unit (CPU), memory, input/output (I/O) devices - provides basic computer resources
- Software
 - ♦ OS
 - applications programs compilers, database systems, games, business programs
- OS makes the hardware more convenient to program and use and ensures that it is used efficiently. It does so by:
 - providing standard services to the application programs (file

3

5

- access, memory management, networking, etc.)
- coordination of multiple applications and users

OS history

- The history of OS follows the decrease of hardware cost and increase in speed and sophistication:
- From 1953 the speed of computer systems increased 9 orders of magnitude (cf. the speed of means of public transportation throughout modern history increased only 2 orders of magnitude: horseback - 10 mph, supersonic passenger jet - 1000 mph)
 Changes in "typical" academic computer:
- 1081 1096

	1001	1000
MIPS	1	400
price / MIPS	\$100,000	\$50
memory	128 KByte	64 MByte
disk	10 MByte	4 GByte
network	9600 bit/sec	155 Mb/s
address bits	16	64

An OS is like:

- A magician provides each user with the illusion of a dedicated machine with infinite memory and CPU time
- A government allocates resources efficiently and fairly, protects users from each other, provides safe and secure communication
- A parent always there when you need it, never breaks, always succeeds
- A fast food restaurant provides a service everyone needs, always works the same everywhere (standardization)
- A complex system but keep it as simple as possible so that it will work

OS history (cont.)

Phase 0 - no OS

- One user at console
 - One function at a time (computation, I/O, user think/response)
 - Program loaded via card deck
- User debugs at console
- Phase 1 Batch Systems
 - No direct interaction between user (programmer) and machine: user submits her program (job) to another person - operator, the jobs are batched to speed up processing and run by the operator, the result is returned to the user
 - the processor (CPU) is idle most of the time since the peripheral devices are slow
 - maybe we can spool the jobs on disk to speed up the loading process?

4

2

Successes/Failures

- MULTICS announced in 1963, not released until 1969
- IBM's OS/360 released with 1000 known bugs
- UNIX developed at Bell Labs so a couple of computer nerds (Thompson, Ritchie) could play Star Trek on an unused PDP-7 minicomputer

OS history (cont.)

Phase 2 - Multiprogramming

- Multiprogramming several programs are
- executed in parallel
- Pick some jobs to run (scheduling), and put them in memory (memory management)
- Run one job; when it waits on something (tape to be mounted,
 - card read, key pressed), switch to another job in memory
- Phase 3 Time sharing (Multitasking)
 - multiprogramming is done so fast that the user(s)
 - can access the system simultaneously
 - New problems:

7

9

11

- Need preemptive scheduling to maintain adequate response time
- Need to avoid *thrashing* (swapping programs in and out of memory too often)

8

10

» Need to provide adequate protection

Features of Modern OSes

- Concurrency
 - Multiple processes active at once
 - Processes can communicate
 - Processes may require mutually-exclusive access to some resource
 - CPU scheduling, resource management
- Memory management allocate memory to processes, move processes between disk and memory
- File system allocate space for storage of programs and data on disk
- Networks and distributed computing allow computers to communicate and work together
- Security & protection

Problems with modern OSes

- Enormous
 - Small OS = 100K lines of code
 - Big OS = 10M lines
 - Complex (100-1000 person year of work)
- Poorly understood (outlives its creators, too large for one person to comprehend)
- have to support a variety of software created at different times and with different demands (legacy code/modern software)

New Research and Development

- Parallel operating systems
 - Shared memory, shared clock
 - Large number of tightly-coupled processors
 - Appearance of single operating system
- Distributed operating systems
 - No shared memory, no shared clock
 - Small number of loosely-coupled processors
 - Appearance of single operating system is ideal goal, but not realized in practice
 - May try to simulate a shared memory
- Real-time operating systems
 - Meet hard / soft real-time constraints on processing of data