Previous lecture overview

+ Semaphores provide the first high-level synchronization
abstraction that is possible to implement efficiently in OS.

t This allows avoid using ad hoc Kernel synchronization
techniques like non-preemptive kernel

t+ allows to implement in multiprocessors
+ problems
programming with semaphores is error prone - the code
is often cryptic
for signal and wait to be atomic on multiprocessor
architecture - a low level locking primitives (like test&set
instruction) need to be available
blocking and unblocking require context switch -
performance degradation
no means of finding out whether the thread will block on
semaphore
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What's wrong with semaphores?
+ Besides other shortcomings programming with
semaphores is deadlock - prone

milk=>V( ); milk—>P();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk=>P(); milk—>P();

t are these programs correct?
t what's wrong with them?
+ Solution — new language constructs
t (Conditional) Critical region
region v when B do S; variable v is a shared variable that can
only be accessed inside the critical region
Boolean expression B governs access

Statement S ( critical region) is executed only if B is true;
otherwise it blocks until B becomes true

can prevent some simple programming errors but still
problematic

t Monitors - convoluted and seldom used

Locks

+ Locks provide mutually exclusive
access to shared data:

t Alock can be “locked” or Thread A —Thread B
“unlocked” (sometimes lock(milk ); lock(milk );
called “busy” and “free”) if (noMilk) if (noMilk)
initially it is unlocked buy milk; buy milk;

+ athread is said to have release(milk);  release(milk );

(own) the lock if it successfully

executed | ock statement.

If other threads attempt to execute a lock - they
are suspended

to achieve mutually exclusive access to variables
threads should access them only inside
lock/unlock statements

Lecture 13: locks and
condition variables

+ Problems with semaphores
+ locks
t definitions and usage
t implementation
t spinlocks
t sleeplocks
+ condition variables
t+ definition and usage
+ unbouded producer/consumer problem
t+ dining philosophers problem
t implementing CVs

Semaphore=Lock+Condition Variable

semaphore serves two purposes:
t Mutual exclusion — protect shared data
+ milk - in too much milk
t+ buffer in producer/consumer
t+ shared resource in readers/writers
t+ forks in Dining philosophers

t temporal coordination of events (one thread waits for something, other
thread signals when it's available)
t+ stop the roommate from going to the store while you are out to get
milk
t+ suspend producer when buffer is full, consumer - when empty
+ what is the coordination in readers/writers and dining philosophers?
idea — two separate constructs:
t Locks — provide mutually exclusion
Condition variables — provide synchronization

Like semaphores, locks and condition variables are language-
independent, and are available in many programming environments

Spinlocks and sleeplocks

+ locks can be implemented differently depending on its use:

+ spinlock - a locked process does not release CPU but rather “spins”
constantly checking the lock until it opens
t advantages
t+ fast - the process proceeds as soon as the lock is open
+ may save time for locks that are held for short time - no context
switching
t disadvantages
+ wasteful for locks that are held long - the process wastes CPU
cycles spinning
t cannot be used on uniprocessor systems. Why?

+ sleeplock - a locked process blocks and is put back on the ready queue
only when the lock is open

t advantages
+ can be used on uniprocessor
+ saves CPU time on locks held long



Spinlock implementation

Simplest implementation of
locks - set up a boolean variable
(* s) is by busy waiting and
constantly checking on it's value
with atomic RMW instruction like
test&set (t est nset)

problem - test&set monopolizes
memory access and degrades
system performance

solution - have two whi | e loops
check by test&set once - if

void spin_|lock (bool *s) {
while (testnset(*s))

voi d spin_unl ock (bool *s) {
*s=FALSE;
}

void spin_|l ock (bool *s) {
while (testnset(*s))

Locks, why do we need anything else?

+ Queue::Remove will only return
an item if there’s already one in
the queue

+ if the queue is empty, it might be
more desirable for
Queue::Remove to wait until
there is something to remove

+ Can'tjust go to sleep - if it
sleeps while holding the lock, no
other thread can access the
shared queue, add an item to it,
and wake up the sleeping thread

+ Solution: condition variables
will let a thread sleep inside a

Queue: : Add(int *item){
l ock->Acquire();
/* add itemto queue */
| ock->Rel ease();

}

Queue: : Renove( ) {
int *item
l ock->Acquire( );

if (!queue->empty()){
/* renpve item
from queue */

| ock->Rel ease();
return(item;

IocI_(ed - check with regular read while (*s)
until unlocked ;
what's the problem with both of }
these solutions? voi d spin_unl ock (bool *s) {
+ Unfair! } "S=FALSE
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Condition variables

+ Condition variable (CV) coordinates events

+ CVis associated with a predicate (an expression that evaluates to
either true of false) and a lock;

+ three basic operations on CVs:

t wait - blocks the thread and releases the associated lock
si gnal - if threads are waiting on the lock, wake up one of
those threads and put it on the ready list; otherwise do nothing
br oadcast — if threads are waiting on the lock, wake up all
of those threads and put them on the ready list; otherwise do
nothing
+ the predicate is tested outside of the CV primitives
+ the lock is closed and (sometimes) released outside of CV

Using locks and CVs for
dining philosophers problem
mutex: | ock;

self: array [0..N-1] of condition;
state: array [0..N-1] of

pickup (int i) {
acqui re(nut ex) ;

(think, hungry, eat) state[i] = hungry;
initially all thinking test(i);
if (state[i] != eat)
test (int k) { wai t (sel f[i],nutex);

if ((state[k+N-1 mod N != eat) && rel ease(mut ex) ;

(state[k] == hungry) && }
state[k+1 mod N] != eat)) {
state[k] = eat;

signal (sel f[k]); putdown (int i) {

acqui re(nut ex) ;
state[i] = thinking;
} test(i +N-1 mod N);
+ The philosophers try to acquire the forks test(i+l nod N);
until they succeed rel ease(mit ex) ;
+ does this solution ensure MX? Fairness?

+ does a process need to know about non-neighbors? 1

critical section, by releasing the
lock while the thread sleeps

Using locks and CVs for
producer /consumer problem

Condi tionvar *cv;

lock *lk;

int avail =0; + Unbounded producer/consumer with
/* producer */ locks "_:md CV§ .
whi | e(1){ + Associated with a data structure is

I k->Acquire();
/* produce next */ t
avai | ++

cv->Signal ();

| k- >Rel ease();

both a lock and a condition variable

Before the program performs an
operation on the data structure, it
acquires the lock

If it needs to wait until another
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holds the waiting threads, the
operations on this list are

+ note the difference between
this spinlock - the internal CV
lockands - the external
lock that is used in association

} t
/% consumer */ operation puts the data structure
whi | e(1){ into an appropriate state, it uses
| k- >Acqui re() ; the condition variable to wait
i f(avail ==0)
cv->Wai t (1k);
/* consunme next */
avail --;
| k->Rel ease();
}
Implementing CV using spinlocks
/* condition consists of:
list - waiting threads
listlock - |ock protecting
operation on |ist*/ . .
i d vait( diti . + the CV contains a list that
void wait(condition *c,
lock *s){
spi nl ock(c->listlock); )
,E add S(e” to list )*, protected by a spinlock
spi nunl ock(c->listlock);
unl ock(s);
/* block current thread */
lock(s);
y e with the CV
void signal (condition *c){

spi nl ock(c->listlock);

/* rempve a thread from
list if list not enpty */

spi nunl ock(c->listlock);

/* make renoved thread
runnable */
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