Previous lecture overview

+ Semaphores provide the first high-level synchronization
abstraction that is possible to implement efficiently in OS.

t This allows avoid using ad hoc Kernel synchronization
techniques like non-preemptive kernel

t+ allows to implement in multiprocessors
+ problems
programming with semaphores is error prone - the code
is often cryptic
for signal and wait to be atomic on multiprocessor
architecture - a low level locking primitives (like test&set
instruction) need to be available
blocking and unblocking require context switch -
performance degradation
no means of finding out whether the thread will block on
semaphore
convoys 1

What's wrong with semaphores?
+ Besides other shortcomings programming with
semaphores is deadlock - prone

milk=>V(); milk—>P();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk=>P(); milk—>P();

t are these programs correct?
t what's wrong with them?
+ Solution — new language constructs
t (Conditional) Critical region
region v when B do S; variable v is a shared variable that can
only be accessed inside the critical region
Boolean expression B governs access

Statement S (critical region) is executed only if B is true;
otherwise it blocks until B becomes true

can prevent some simple programming errors but still
problematic

t Monitors - convoluted and seldom used

Locks

+ Locks provide mutually exclusive
access to shared data:

t Alock can be “locked” or Thread A —Thread B
“unlocked” (sometimes lock(milk); lock(milk);
called “busy” and “free”) if (noMilk) if (noMilk)
initially it is unlocked buy milk; buy milk;

+ athread is said to have release(milk); release(milk);

(own) the lock if it successfully

executed | ock statement.

If other threads attempt to execute a lock - they
are suspended

to achieve mutually exclusive access to variables
threads should access them only inside
lock/unlock statements

Lecture 13: locks and
condition variables

+ Problems with semaphores
+ locks
t definitions and usage
t implementation
t spinlocks
t sleeplocks
+ condition variables
t+ definition and usage
+ unbouded producer/consumer problem
t+ dining philosophers problem
t implementing CVs

Semaphore=Lock+Condition Variable

semaphore serves two purposes:
t Mutual exclusion — protect shared data
+ milk - in too much milk
t+ buffer in producer/consumer
t+ shared resource in readers/writers
t+ forks in Dining philosophers

t temporal coordination of events (one thread waits for something, other
thread signals when it's available)
t+ stop the roommate from going to the store while you are out to get
milk
t+ suspend producer when buffer is full, consumer - when empty
+ what is the coordination in readers/writers and dining philosophers?
idea — two separate constructs:
t Locks — provide mutually exclusion
Condition variables — provide synchronization

Like semaphores, locks and condition variables are language-
independent, and are available in many programming environments

Spinlocks and sleeplocks

+ locks can be implemented differently depending on its use:

+ spinlock - a locked process does not release CPU but rather “spins”
constantly checking the lock until it opens
t advantages
t+ fast - the process proceeds as soon as the lock is open
+ may save time for locks that are held for short time - no context
switching
t disadvantages
+ wasteful for locks that are held long - the process wastes CPU
cycles spinning
t cannot be used on uniprocessor systems. Why?

+ sleeplock - a locked process blocks and is put back on the ready queue
only when the lock is open

t advantages
+ can be used on uniprocessor
+ saves CPU time on locks held long

Spinlock implementation

Simplest implementation of
locks - set up a boolean variable
(* s) is by busy waiting and
constantly checking on it's value
with atomic RMW instruction like
test&set (t est nset)

problem - test&set monopolizes
memory access and degrades
system performance

solution - have two whi | e loops
check by test&set once - if

void spin_|lock (bool *s) {
while (testnset(*s))

voi d spin_unl ock (bool *s) {
*s=FALSE;
}

void spin_|l ock (bool *s) {
while (testnset(*s))

Locks, why do we need anything else?

+ Queue::Remove will only return
an item if there’s already one in
the queue

+ if the queue is empty, it might be
more desirable for
Queue::Remove to wait until
there is something to remove

+ Can'tjust go to sleep - if it
sleeps while holding the lock, no
other thread can access the
shared queue, add an item to it,
and wake up the sleeping thread

+ Solution: condition variables
will let a thread sleep inside a

Queue: : Add(int *item){
l ock->Acquire();
/* add itemto queue */
| ock->Rel ease();

}

Queue: : Renove() {
int *item
l ock->Acquire();

if (!queue->empty()){
/* renpve item
from queue */

| ock->Rel ease();
return(item;

IocI_(ed - check with regular read while (*s)
until unlocked ;
what's the problem with both of }
these solutions? voi d spin_unl ock (bool *s) {
+ Unfair! } "S=FALSE
7

Condition variables

+ Condition variable (CV) coordinates events

+ CVis associated with a predicate (an expression that evaluates to
either true of false) and a lock;

+ three basic operations on CVs:

t wait - blocks the thread and releases the associated lock
si gnal - if threads are waiting on the lock, wake up one of
those threads and put it on the ready list; otherwise do nothing
br oadcast — if threads are waiting on the lock, wake up all
of those threads and put them on the ready list; otherwise do
nothing
+ the predicate is tested outside of the CV primitives
+ the lock is closed and (sometimes) released outside of CV

Using locks and CVs for
dining philosophers problem
mutex: | ock;

self: array [0..N-1] of condition;
state: array [0..N-1] of

pickup (int i) {
acqui re(nut ex) ;

(think, hungry, eat) state[i] = hungry;
initially all thinking test(i);
if (state[i] != eat)
test (int k) { wai t (sel f[i],nutex);

if ((state[k+N-1 mod N != eat) && rel ease(mut ex) ;

(state[k] == hungry) && }
state[k+1 mod N] != eat)) {
state[k] = eat;

signal (sel f[k]); putdown (int i) {

acqui re(nut ex) ;
state[i] = thinking;
} test(i +N-1 mod N);
+ The philosophers try to acquire the forks test(i+l nod N);
until they succeed rel ease(mit ex) ;
+ does this solution ensure MX? Fairness?

+ does a process need to know about non-neighbors? 1

critical section, by releasing the
lock while the thread sleeps

Using locks and CVs for
producer /consumer problem

Condi tionvar *cv;

lock *lk;

int avail =0; + Unbounded producer/consumer with
/* producer */ locks "_:md CV§ .
whi | e(1){ + Associated with a data structure is

I k->Acquire();
/* produce next */ t
avai | ++

cv->Signal ();

| k- >Rel ease();

both a lock and a condition variable

Before the program performs an
operation on the data structure, it
acquires the lock

If it needs to wait until another

10

holds the waiting threads, the
operations on this list are

+ note the difference between
this spinlock - the internal CV
lockands - the external
lock that is used in association

} t
/% consumer */ operation puts the data structure
whi | e(1){ into an appropriate state, it uses
| k- >Acqui re() ; the condition variable to wait
i f(avail ==0)
cv->Wai t (1k);
/* consunme next */
avail --;
| k->Rel ease();
}
Implementing CV using spinlocks
/* condition consists of:
list - waiting threads
listlock - |ock protecting
operation on |ist*/ . .
i d vait(diti . + the CV contains a list that
void wait(condition *c,
lock *s){
spi nl ock(c->listlock);)
,E add S(e” to list)*, protected by a spinlock
spi nunl ock(c->listlock);
unl ock(s);
/* block current thread */
lock(s);
y e with the CV
void signal (condition *c){

spi nl ock(c->listlock);

/* rempve a thread from
list if list not enpty */

spi nunl ock(c->listlock);

/* make renoved thread
runnable */

12

