
1

Previous lecture overview

? Semaphores provide the first high-level synchronization
abstraction that is possible to implement efficiently in OS.
? This allows avoid using ad hoc Kernel synchronization

techniques like non-preemptive kernel
? allows to implement in multiprocessors

? problems
? programming with semaphores is error prone - the code

is often cryptic
? for signal and wait to be atomic on multiprocessor

architecture - a low level locking primitives (like test&set
instruction) need to be available

? blocking and unblocking require context switch -
performance degradation

? no means of finding out whether the thread will block on
semaphore

? convoys 2

Lecture 13: locks and
condition variables

? Problems with semaphores
? locks

? definitions and usage
? implementation

? spinlocks
? sleeplocks

? condition variables
? definition and usage

? unbouded producer/consumer problem
? dining philosophers problem

? implementing CVs

3

What’s wrong with semaphores?
? Besides other shortcomings programming with

semaphores is deadlock - prone

milk–>V(); milk–>P();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk–>P(); milk–>P();

? are these programs correct?
? what’s wrong with them?

? Solution — new language constructs
? (Conditional) Critical region

? region v when B do S; variable v is a shared variable that can
only be accessed inside the critical region

? Boolean expression B governs access
? Statement S (critical region) is executed only if B is true;

otherwise it blocks until B becomes true
? can prevent some simple programming errors but still

problematic
? Monitors - convoluted and seldom used 4

Semaphore=Lock+Condition Variable
? semaphore serves two purposes:

? Mutual exclusion — protect shared data
? milk - in too much milk
? buffer in producer/consumer
? shared resource in readers/writers
? forks in Dining philosophers

? temporal coordination of events (one thread waits for something, other
thread signals when it’s available)
? stop the roommate from going to the store while you are out to get

milk
? suspend producer when buffer is full, consumer - when empty
? what is the coordination in readers/writers and dining philosophers?

? idea — two separate constructs:
? Locks — provide mutually exclusion
? Condition variables — provide synchronization
? Like semaphores, locks and condition variables are language-

independent, and are available in many programming environments

5

Locks
? Locks provide mutually exclusive

access to shared data:
? A lock can be “locked” or

 “unlocked” (sometimes
called “busy” and “free”)
initially it is unlocked

? a thread is said to have
(own) the lock if it successfully
 executed lock statement.

? If other threads attempt to execute a lock - they
are suspended

? to achieve mutually exclusive access to variables
threads should access them only inside
lock/unlock statements

Thread A Thread B

lock(milk); lock(milk);
if (noMilk) if (noMilk)
 buy milk; buy milk;
release(milk); release(milk);

6

? locks can be implemented differently depending on its use:
? spinlock - a locked process does not release CPU but rather “spins”

constantly checking the lock until it opens
? advantages

? fast - the process proceeds as soon as the lock is open
? may save time for locks that are held for short time - no context

switching
? disadvantages

? wasteful for locks that are held long - the process wastes CPU
cycles spinning

? cannot be used on uniprocessor systems. Why?
? sleeplock - a locked process blocks and is put back on the ready queue

only when the lock is open
? advantages

? can be used on uniprocessor
? saves CPU time on locks held long

Spinlocks and sleeplocks

7

? Simplest implementation of
locks - set up a boolean variable
(*s) is by busy waiting and
constantly checking on it’s value
with atomic RMW instruction like
test&set (testnset)

? problem - test&set monopolizes
memory access and degrades
system performance

? solution - have two while loops
check by test&set once - if
locked - check with regular read
until unlocked

? what’s the problem with both of
these solutions?

? Unfair!

void spin_lock (bool *s) {
 while (testnset(*s))

;
}
void spin_unlock (bool *s) {
 *s=FALSE;
}

void spin_lock (bool *s) {
 while (testnset(*s))
 while (*s)

;
}
void spin_unlock (bool *s) {
 *s=FALSE;
}

Spinlock implementation

8

Locks, why do we need anything else?

Queue::Add(int *item){
 lock->Acquire();
 /* add item to queue */
 lock->Release();
}

Queue::Remove() {
 int *item;
 lock->Acquire();

 if (!queue->empty()){
/* remove item
 from queue */

 }
 lock->Release();
 return(item);
}

? Queue::Remove will only return
an item if there’s already one in
the queue

? if the queue is empty, it might be
more desirable for
Queue::Remove to wait until
there is something to remove

? Can’t just go to sleep - if it
sleeps while holding the lock, no
other thread can access the
shared queue, add an item to it,
and wake up the sleeping thread

? Solution: condition variables
will let a thread sleep inside a
critical section, by releasing the
lock while the thread sleeps

9

Condition variables

? Condition variable (CV) coordinates events
? CV is associated with a predicate (an expression that evaluates to

either true of false) and a lock;
? three basic operations on CVs:

? wait - blocks the thread and releases the associated lock
? signal - if threads are waiting on the lock, wake up one of

those threads and put it on the ready list; otherwise do nothing
? broadcast — if threads are waiting on the lock, wake up all

of those threads and put them on the ready list; otherwise do
nothing

? the predicate is tested outside of the CV primitives
? the lock is closed and (sometimes) released outside of CV

10

Using locks and CVs for
producer /consumer problem

? Unbounded producer/consumer with
locks and CVs

? Associated with a data structure is
both a lock and a condition variable
? Before the program performs an

operation on the data structure, it
acquires the lock

? If it needs to wait until another
operation puts the data structure
into an appropriate state, it uses
the condition variable to wait

Conditionvar *cv;
lock *lk;
int avail=0;

/* producer */
while(1){
 lk->Acquire();
 /* produce next */
 avail++
 cv->Signal();
 lk->Release();
}

/* consumer */
while(1){
 lk->Acquire();
 if(avail==0)
 cv->Wait(lk);
 /* consume next */
 avail--;
 lk->Release();
}

11

Using locks and CVs for
dining philosophers problem

mutex: lock;
self: array [0..N–1] of condition;
state: array [0..N–1] of

(think,hungry,eat)
initially all thinking

pickup (int i) {
 acquire(mutex);
 state[i] = hungry;
 test(i);
 if (state[i] != eat)
 wait(self[i],mutex);
 release(mutex);
}

putdown (int i) {
 acquire(mutex);
 state[i] = thinking;
 test(i+N–1 mod N);
 test(i+1 mod N);
 release(mutex);
}

test (int k) {
 if ((state[k+N–1 mod N] != eat) &&
 (state[k] == hungry) &&
 state[k+1 mod N] != eat)) {

state[k] = eat;
signal(self[k]);

 }
}

? The philosophers try to acquire the forks
until they succeed

? does this solution ensure MX? Fairness?
? does a process need to know about non-neighbors? 12

Implementing CV using spinlocks

? the CV contains a list that
holds the waiting threads, the
operations on this list are
protected by a spinlock

? note the difference between
this spinlock - the internal CV
lock and s - the external
lock that is used in association
with the CV

/* condition consists of:
 list - waiting threads
 listlock - lock protecting
 operation on list*/

void wait(condition *c,
 lock *s){
 spinlock(c->listlock);
 /* add self to list */
 spinunlock(c->listlock);
 unlock(s);
 /* block current thread */
 lock(s);
 return;
}

void signal(condition *c){
 spinlock(c->listlock);
 /* remove a thread from
 list if list not empty */
 spinunlock(c->listlock);
 /* make removed thread
 runnable */
}

