
1

Lecture 18: Parallel and
Distributed Systems

n Classification of parallel/distributed
architectures

n SMPs
n Distributed systems
n Clusters

2

What is a distributed system?

n From various textbooks:
u “A distributed system is a collection of independent computers

that appear to the users of the system as a single computer.”
u “A distributed system consists of a collection of autonomous

computers linked to a computer network and equipped with
distributed system software.”

u “A distributed system is a collection of processors that do not
share memory or a clock.”

u “Distributed systems is a term used to define a wide range of
computer systems from a weakly-coupled system such as wide
area networks, to very strongly coupled systems such as
multiprocessor systems.”

3

What is a distributed system?(cont.)

n A distributed system is
a set of physically separate
processors connected by
one or more
communication links

n Is every system with >2 computers a distributed system??
u Email, ftp, telnet, world-wide-web
u Network printer access, network file access, network file

backup
u We don’t usually consider these to be distributed systems…

P1
P2 P3

P4 P5

Network

4

What is a distributed system?(cont.)

n Michael Flynn (1966)
u SISD — single instruction, single data
u SIMD — single instruction, multiple data
u MISD — multiple instruction, single data
u MIMD — multiple instruction, multiple data

n More recent (Stallings, 1993)

5

Classification
of MIMD
Architectures

n Tightly coupled ≈ parallel processing
u Processors share clock and memory, run one OS, communicate

frequently
n Loosely coupled ≈ distributed computing

u Each processor has its own memory, runs its own OS (?),
communicates infrequently

Tanenbaum
(date?)

MIMD
parallel and
distributed
computers

tightly
coupled

multiprocessors
(shared
memory)

multicomputers
(distributed /

private memory)

loosely
coupled

switchedbus switchedbus

UltraSPARCSequent HypercubeWorkstations
on a LAN

6

Classification of the OS

n Multiprocessor Operating System
u Tightly-coupled software (single OS) running on tightly-coupled

hardware
u A process can run on any processor

F Single ready queue!
u All memory is shared
u File system similar to that on non-distributed systems

n Network Operating System
u Loosely-coupled hardware
u Loosely-coupled software

F Each computer runs its own OS
F User knows which machine he/she is on

u Goal: share resources, provide global (network) file system
u Typical utility programs: rlogin, rcp, telnet, ftp

7

Classification of the OS (cont.)
n “True” Distributed Operating System

u Loosely-coupled hardware
F No shared memory, but provides the “feel” of a single memory

u Tightly-coupled software
F One single OS, or at least the feel of one

u Machines are somewhat, but not completely, autonomous

P1 P2 P3

P4 P5

Network

M1 M2 M3

M4 M5

Disk1

Disk5Printer4 8

What’s wrong with big machines?

n Symmetric multiprocessors (SMP) - multiple processors
sharing memory such that the access from each processor
to each memory location takes the same amount of time (uniform
access)

n advantages:
u single - processor applications can run without modifications (OS has

to be modified. Why? How?)
u inter-processor communication is fast (programs with fine-grain

parallelism run fast)

n problems:
u no fault-tolerance - one processor (or cache) fails, the whole system

fails
u does not scale (or gets inordinately expensive as it does)

F hard to provide uniform memory access
F processor speed are increasing faster than memory speed

9

Why (not) use distributed systems?
n Advantages:

u Price / performance - network of workstations provides more MIPS
for less $ than a mainframe does

u Higher performance - n processors potentially gives n times the
computational power

u Resource sharing - expensive (scarce) resources need not be
replicated for each processor

u Scalability - modular structure makes it easier to add or replace
processors and resources

u Reliability Replication of processors and resources yields fault
tolerance

n Problems:
u requires paradigm shift for applications programmer - message

passing rather than shared memory
u communications between processors are slow - fine-grain parallelism

is slow
u have to deal with (administer, upgrade, maintain) multiple machines

rather than one
10

Clusters

n A subclass of distributed systems
n a small scale (mostly) homogeneous (the same hardware and OS)

array of computers (located usually in one site) dedicated to small
number of well defined tasks in solving of which the cluster acts as
one single whole.

n typical tasks for “classic” distributed systems:
u file services from/to distributed machines over (college) campus
u distributing workload to all machine on campus

n typical tasks for a cluster:
u high-availability web-service/file service, other high-availability

applications
u computing “farms”.

11

Clusters (C) vs. Distributed systems (D)
n structure

u [C] - homogeneous - purchased to perform a certain task
u [D] - heterogeneous - put together from the available hardware

n scale
u [C] - small scale - don’t have to make sure that the setup scales
u [D] - medium/large - have to span (potentially) large number of machines

n task
u [C] - specialized - made to perform a small set of well-defined tasks
u [D] - general - usually have to be general-user computing environments

n price
u [C] - (relatively) cheap
u [D] - free(?)/expensive

n reliability
u [C] - as good as it needs to be
u [D] - high/low?

n security
u [C] - nodes trust each-other
u [D] - nodes do not trust each other

12

Cluster
examples

n branches get access to shared information even if one of
the links or computers fails

pictures taken from “In Search of Clusters”, G.F. Pfister, 1998

13

Cluster examples (cont.)

n active machine - serves files to the network of computers
n standby machine -listens to network and updates it’s own copy of

files
n in case of machine failure - standby machine takes over file service

transparent to users
14

Cluster examples (cont.)

n dispatcher machine - sends the web requests to server
machines and makes sure that the servers are evenly loaded

n web service continues even if a server fails

