
Comparison of Tarry’s Algorithm and Awerbuch’s Algorithm

1

Comparison of Tarry’s Algorithm and
Awerbuch’s Algorithm

(Spring 2010)

Patel Sanjitkumar M.
Department of Computer Science

Kent State University, Kent, OH - 44242, USA
spatel44@kent.edu

Abstract: This paper is about comparing Tarry’s algorithm
and Awerbuch’s algorithm by varying certain parameters.
Tarry’s algorithm is wave algorithm as well as traversal
algorithm, while Awerbuch’s algorithm is well known
traversal algorithm. In this paper an attempt has been
made to compare both algorithms, in terms of their time
complexity and message complexity, by varying number of
nodes and density of network. The result shows that for
message complexity, Tarry’s algorithm performs better
than Awerbuch’s algorithm, and for time complexity,
Awerbuch’s algorithm performs better than Tarry’s
algorithm as number of nodes increases, but for less
number of nodes and lower connection probability,
Tarry’s algorithm performs better than Awerbuch’s
algorithm.

I. INTRODUCTION

In this paper experiments are done to compare two traversal
algorithms: Tarry’s algorithm and Awerbuch’s algorithm.
Traversal algorithms are the wave algorithms with the
following properties:
1. Each computation contains one initiator which starts

computation by sending one message.
2. When a process receives a message it either sends out one

message or decides.
And a wave algorithm is a distributed algorithm which
satisfies following properties:
1. Termination: Each computation is finite.
2. Decision: Each computation contains at least one decide

event.
3. Dependence: In each computation each decide event is

causally preceded by an event in each process.

The experiments were done to capture message
complexity and time complexity of both the algorithms.
Message complexity is number of messages it takes the
algorithm to carry out specified task, and time complexity is
the number of messages in the longest chain of causally
dependent events. Data were collected by varying number of
nodes and density of the network. Density of network means
connection probability and connection probability means if
there is an edge between two nodes or not.

The remainder of the paper is organized as follows. The

next section gives brief descriptions of the subject algorithms.
In Section III, an elaborate description of the experimental set
up is given. In Section IV, the results obtained are shown with
graphs. In Section V, analysis of results is given. The
succeeding section discusses conclusions and future work.

II. ALGORITHMS

This section gives a brief description of algorithms used in this
paper. In Tarry’s algorithm, a process never forwards the
token twice through the same channel. The initiator starts the
algorithm by arbitrarily choosing a neighbor and sending it the
token. For each process p, upon receipt of a token from a
process q, if father is undefined then q is set as the father.
Token is forwarded to a neighbor if it has not been sent before
to that neighbor. If no such neighbor exists then token is sent
to the father. The algorithm terminates when the token has
visited all the processes and at the end, the initiator receives it
and decides. Each computation of Tarry’s algorithm defines a
spanning tree of the network. The root of this tree is the
initiator, and each non-initiator knows its own father. In
Awerbuch’s algorithm, a node holding the token for the first
time informs all neighbors except its father. It prevents token
forwarding over frond edges because each process knows
which neighbors were visited before it forwards the token. The
node notifies its neighbors that it is visited by sending <vis>
messages to them. The token is only forwarded when these
neighbors all acknowledged reception. The token is only
forwarded to nodes that were not yet visited.

III. EXPERIMENTAL SETUP

Since, both algorithms work on arbitrary topology, it was
necessary to create random topologies. According to [1],
random topologies can be represented in matrix form. This
kind of matrix are called Adjacency matrix. Considering our
topologies as graphs in which each vertex represents node and
each edge represents communication channel, according to
incidence matrix, if there is an edge between two vertexes, it
can be represented as “1” in the matrix, and if there is no edge

Comparison of Tarry’s Algorithm and Awerbuch’s Algorithm

2

between two vertexes, it can be represented as “0” in the
matrix. Based on this concept, random graphs were generated
using random function, which acted as an arbitrary topology
for my experiments. Fig 1 shows sample adjacency matrix and

 1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 0 1 0 1
4 1 1 1 0

 1 2

 4 3

Fig 1. Example of adjacency matrix and corresponding

graph

corresponding graph where numbers from 1 to 4 shows nodes
and 0 and 1 represents if corresponding nodes have an edge(1)
or not(0).
 The number of nodes used for the experiments were 3 to 50,
because 2 nodes are trivial and don’t provide any significant
value. Significant difference was seen at nodes 50, so that was
the stopping point for experiment. Connection probability
used was 25%, 50% and 75%. The number of nodes and
connection probability needs to be input at starting of the
experiment and program generates graph with given
connection probability and number of nodes. Program first
generates random graph and checks if graph has connection
probability same as it was input, and if it is so, program starts
simulation, otherwise it generates other random graph and
checks again.

IV. RESULTS

Data were collected by running program three times for
each experiment. The results shown below shows average
value of data collected. First result shows graph of time
complexity with connection probability of 25% as shown in
Fig 2. Horizontal line represents number of nodes and vertical
line represents time complexity. Result shows that Tarry’s
algorithm performs better during number of nodes 4 to 14.
During number of nodes between 14 and 18 both algorithm
performs similar. And after number of nodes 18, Awerbuch’s
algorithm outperforms Tarry’s algorithm. It can be observed
that curve for Tarry’s algorithm is quadratic while curve for
Awerbuch’s algorithm is linear.

Second result shows graph of time complexity at connection
probability of 50% as shown in Fig 3. Horizontal line
represents number of nodes and vertical line represents time-

Fig 2. Comparison of time complexity at connection

Probability of 25%

Fig 3. Comparison of time complexity at connection

Probability of 50%

Fig 4. Comparison of time complexity at connection

Probability of 75%

complexity. Result shows during number of nodes between 4
and 10 both algorithms perform similar. And after number of
nodes 10, Awerbuch’s algorithm outperforms Tarry’s
algorithm. It can be observed that curve for Tarry’s algorithm
is quadratic while curve for Awerbuch’s algorithm is linear.

Third result shows graph of time complexity with
connection probability of 75% as shown in Fig 4. Horizontal
line represents number of nodes and vertical line represents
time complexity. Result shows during number of nodes

Comparison of Tarry’s Algorithm and Awerbuch’s Algorithm

3

between 4 and 8 both algorithms perform similar. And after
number of nodes 8, Awerbuch’s algorithm outperforms
Tarry’s algorithm. It can be observed that curve for Tarry’s
algorithm is quadratic while curve for Awerbuch’s algorithm
is still linear.
 Following are the results for comparison of message
complexity at connection probability of 25%, 50% and 75%.

Fig 5. Comparison of message complexity at connection

Probability of 25%

Fig 6. Comparison of message complexity at connection

Probability of 50%

Fig 7. Comparison of message complexity at connection

Probability of 75%

Fig 5 shows graph of message complexity at connection
probability of 25%. Horizontal line represents number of
nodes and vertical line represents message complexity. Result
shows that during number of nodes between 4 and 14 both
algorithms perform similar. And after number of nodes 14,
Tarry’s algorithm outperforms Awerbuch’s algorithm. It can
be observed that curve for Tarry’s algorithm and curve for
Awerbuch’s algorithm is quadratic.

Fig 6 shows graph of message complexity at connection
probability of 50%. Horizontal line represents number of
nodes and vertical line represents message complexity. Result
shows that during number of nodes between 4 and 12 both
algorithms perform similar. And after number of nodes 12,
Tarry’s algorithm performs better than Awerbuch’s algorithm.
It can be again observed that curve for Tarry’s algorithm and
curve for Awerbuch’s algorithm is quadratic.

Fig 7 shows graph of message complexity at connection
probability of 75%. Horizontal line represents number of
nodes and vertical line represents message complexity. Result
shows that during number of nodes between 4 and 10 both
algorithms perform similar. And after number of nodes 10,
Tarry’s algorithm performs better than Awerbuch’s algorithm.
It can be again observed that curve for Tarry’s algorithm and
curve for Awerbuch’s algorithm is quadratic.

V. ANALYSIS OF RESULTS

In addition to analysis given in above section, it can be
observed that for the graphs of time complexity, for large
number of nodes, Awerbuch’s algorithm proves very stable
and it increases linearly, while for Tarry’s algorithm, time
complexity increases almost twice the speed of that of
Awerbuch’s algorithm. But for the small number of nodes, in
fact Tarry’s algorithm performs better than Awerbuch’s
algorithm. This was surprising, but it was reasonable.
Similarly with graphs of message complexity, it can be
observed that for small number of nodes, both algorithms
perform almost similarly, but as number of nodes and
connection probability increases, Tarry’s algorithm performs
better than Awerbuch’s algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper compared two important algorithms, Tarry’s
algorithm and Awerbuch’s algorithm, based on their
performance for time complexity and message complexity by
varying number of nodes and connection probability. The
conclusion is, for small number of nodes and lower connection
probability, time complexity for Tarry’s algorithm is better
than Awerbuch’s algorithm, so it is advisable to use Tarry’s
algorithm for small number of nodes and lower connection
probability if aim is to maximize time complexity. But for
large number of nodes and higher connection probability, time
complexity of Awerbuch’s algorithm is better than Tarry’s
algorithm. As far as message complexity is concerned, Tarry’s
algorithm is always better than Awerbuch’s algorithm.
Because of message overhead for “Ack” and “Vis” messages
of Awerbuch’s algorithm, it always performs poor than

Comparison of Tarry’s Algorithm and Awerbuch’s Algorithm

4

Tarry’s algorithm as far as message complexity is concerned.
Also when the graphs become denser, both time and message
complexity of Tarry’s algorithm, and message complexity of
Awerbuch’s algorithm are quadratic to the number of nodes in
the network, but the time complexity of Awerbuch’s algorithm
is still linear to the number of nodes in the network.
 Future work is to make program more efficient. Instead of
calculating random 0’s and 1’s for whole matrix, program can
be modified so that it just calculate random 0’s and 1’s for
upper half of matrix, which can be than used for lower half of
matrix as well. Also data was collected on three trials, which
is not enough in real time scenario. Future work would be to
collect data on 15 or more trials. Also instead of varying
number of nodes, number of edges can be varied to collect
data. And finally rather than on simulation engine, data can be
collected by running experiments on real time distributed
systems.

REFERENCES
[1] http://mathworld.wolfram.com/AdjacencyMatrix.html
[2] http://deneb.cs.kent.edu/~mikhail/classes/aos/
[3] “Introduction to Distributed Algorithms” by Gerard Tel

	I. Introduction
	II. Algorithms
	III. Experimental setup
	IV. Results
	V. Analysis of results
	VI. Conclusion and future work

