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Abstract: This paper is about comparing Tarry’s algorithm 
and Awerbuch’s algorithm by varying certain parameters. 
Tarry’s algorithm is wave algorithm as well as traversal 
algorithm, while Awerbuch’s algorithm is well known 
traversal algorithm. In this paper an attempt has been 
made to compare both algorithms, in terms of their time 
complexity and message complexity, by varying number of 
nodes and density of network. The result shows that for 
message complexity, Tarry’s algorithm performs better 
than Awerbuch’s algorithm, and for time complexity, 
Awerbuch’s algorithm performs better than Tarry’s 
algorithm as number of nodes increases, but for less 
number of nodes and lower connection probability, 
Tarry’s algorithm performs better than Awerbuch’s 
algorithm. 

I. INTRODUCTION 

In this paper experiments are done to compare two traversal 
algorithms: Tarry’s algorithm and Awerbuch’s algorithm. 
Traversal algorithms are the wave algorithms with the 
following properties: 
1. Each computation contains one initiator which starts 

computation by sending one message. 
2. When a process receives a message it either sends out one 

message or decides. 
And a wave algorithm is a distributed algorithm which 
satisfies following properties: 
1. Termination: Each computation is finite. 
2. Decision: Each computation contains at least one decide 

event. 
3. Dependence: In each computation each decide event is 

causally preceded by an event in each process.  
 

The experiments were done to capture message 
complexity and time complexity of both the algorithms. 
Message complexity is number of messages it takes the 
algorithm to carry out specified task, and time complexity is 
the number of messages in the longest chain of causally 
dependent events. Data were collected by varying number of 
nodes and density of the network. Density of network means 
connection probability and connection probability means if 
there is an edge between two nodes or not. 

 
The remainder of the paper is organized as follows. The 

next section gives brief descriptions of the subject algorithms. 
In Section III, an elaborate description of the experimental set 
up is given. In Section IV, the results obtained are shown with 
graphs. In Section V, analysis of results is given. The 
succeeding section discusses conclusions and future work. 

II. ALGORITHMS 

This section gives a brief description of algorithms used in this 
paper. In Tarry’s algorithm, a process never forwards the 
token twice through the same channel. The initiator starts the 
algorithm by arbitrarily choosing a neighbor and sending it the 
token. For each process p, upon receipt of a token from a 
process q, if father is undefined then q is set as the father. 
Token is forwarded to a neighbor if it has not been sent before 
to that neighbor. If no such neighbor exists then token is sent 
to the father. The algorithm terminates when the token has 
visited all the processes and at the end, the initiator receives it 
and decides. Each computation of Tarry’s algorithm defines a 
spanning tree of the network. The root of this tree is the 
initiator, and each non-initiator knows its own father. In 
Awerbuch’s algorithm, a node holding the token for the first 
time informs all neighbors except its father. It prevents token 
forwarding over frond edges because each process knows 
which neighbors were visited before it forwards the token. The 
node notifies its neighbors that it is visited by sending <vis> 
messages to them. The token is only forwarded when these 
neighbors all acknowledged reception. The token is only 
forwarded to nodes that were not yet visited. 

 
 

III. EXPERIMENTAL SETUP 

Since, both algorithms work on arbitrary topology, it was 
necessary to create random topologies. According to [1], 
random topologies can be represented in matrix form. This 
kind of matrix are called Adjacency matrix. Considering our 
topologies as graphs in which each vertex represents node and 
each edge represents communication channel, according to 
incidence matrix, if there is an edge between two vertexes, it 
can be represented as “1” in the matrix, and if there is no edge 
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between two vertexes, it can be represented as “0” in the 
matrix. Based on this concept, random graphs were generated 
using random function, which acted as an arbitrary topology 
for my experiments. Fig 1 shows sample adjacency matrix and 

 
 1 2 3 4 
1 0 1 0 1 
2 1 0 1 1 
3 0 1 0 1 
4 1 1 1 0 

 
   
                      1                                            2 
 
 
 
                       4                                         3 
 
Fig 1. Example of adjacency matrix and corresponding  

graph 
 

corresponding graph where numbers from 1 to 4 shows nodes 
and 0 and 1 represents if corresponding nodes have an edge(1) 
or not(0).  
   The number of nodes used for the experiments were 3 to 50, 
because 2 nodes are trivial and don’t provide any significant 
value. Significant difference was seen at nodes 50, so that was 
the stopping point for experiment. Connection probability 
used was 25%, 50% and 75%. The number of nodes and 
connection probability needs to be input at starting of the 
experiment and program generates graph with given 
connection probability and number of nodes. Program first 
generates random graph and checks if graph has connection 
probability same as it was input, and if it is so, program starts 
simulation, otherwise it generates other random graph and 
checks again. 
  

IV. RESULTS 

Data were collected by running program three times for 
each experiment. The results shown below shows average 
value of data collected. First result shows graph of time 
complexity with connection probability of 25% as shown in 
Fig 2. Horizontal line represents number of nodes and vertical 
line represents time complexity. Result shows that Tarry’s 
algorithm performs better during number of nodes 4 to 14. 
During number of nodes between 14 and 18 both algorithm 
performs similar. And after number of nodes 18, Awerbuch’s 
algorithm outperforms Tarry’s algorithm. It can be observed 
that curve for Tarry’s algorithm is quadratic while curve for 
Awerbuch’s algorithm is linear. 

Second result shows graph of time complexity at connection 
probability of 50% as shown in Fig 3. Horizontal line 
represents number of nodes and vertical line represents time-  

 
Fig 2. Comparison of time complexity at connection  

Probability of 25%  
 
 

 
Fig 3. Comparison of time complexity at connection  

Probability of 50%  
 
 

 
Fig 4. Comparison of time complexity at connection  

Probability of 75%  
 

complexity. Result shows during number of nodes between 4 
and 10 both algorithms perform similar. And after number of 
nodes 10, Awerbuch’s algorithm outperforms Tarry’s 
algorithm. It can be observed that curve for Tarry’s algorithm 
is quadratic while curve for Awerbuch’s algorithm is linear. 

Third result shows graph of time complexity with 
connection probability of 75% as shown in Fig 4. Horizontal 
line represents number of nodes and vertical line represents 
time complexity. Result shows during number of nodes 
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between 4 and 8 both algorithms perform similar. And after 
number of nodes 8, Awerbuch’s algorithm outperforms 
Tarry’s algorithm. It can be observed that curve for Tarry’s 
algorithm is quadratic while curve for Awerbuch’s algorithm 
is still linear. 
   Following are the results for comparison of message 
complexity at connection probability of 25%, 50% and 75%. 
 
 

 
Fig 5. Comparison of message complexity at connection  

Probability of 25%  
 

 

 
Fig 6. Comparison of message complexity at connection  

Probability of 50%  
 
 

 
Fig 7. Comparison of message complexity at connection  

Probability of 75%  

Fig 5 shows graph of message complexity at connection 
probability of 25%. Horizontal line represents number of 
nodes and vertical line represents message complexity. Result 
shows that during number of nodes between 4 and 14 both 
algorithms perform similar. And after number of nodes 14, 
Tarry’s algorithm outperforms Awerbuch’s algorithm. It can 
be observed that curve for Tarry’s algorithm and curve for 
Awerbuch’s algorithm is quadratic. 

Fig 6 shows graph of message complexity at connection 
probability of 50%. Horizontal line represents number of 
nodes and vertical line represents message complexity. Result 
shows that during number of nodes between 4 and 12 both 
algorithms perform similar. And after number of nodes 12, 
Tarry’s algorithm performs better than Awerbuch’s algorithm. 
It can be again observed that curve for Tarry’s algorithm and 
curve for Awerbuch’s algorithm is quadratic. 

Fig 7 shows graph of message complexity at connection 
probability of 75%. Horizontal line represents number of 
nodes and vertical line represents message complexity. Result 
shows that during number of nodes between 4 and 10 both 
algorithms perform similar. And after number of nodes 10, 
Tarry’s algorithm performs better than Awerbuch’s algorithm. 
It can be again observed that curve for Tarry’s algorithm and 
curve for Awerbuch’s algorithm is quadratic. 
 

V. ANALYSIS OF RESULTS 

In addition to analysis given in above section, it can be 
observed that for the graphs of time complexity, for large 
number of nodes, Awerbuch’s algorithm proves very stable 
and it increases linearly, while for Tarry’s algorithm, time 
complexity increases almost twice the speed of that of 
Awerbuch’s algorithm. But for the small number of nodes, in 
fact Tarry’s algorithm performs better than Awerbuch’s 
algorithm. This was surprising, but it was reasonable. 
Similarly with graphs of message complexity, it can be 
observed that for small number of nodes, both algorithms 
perform almost similarly, but as number of nodes and 
connection probability increases, Tarry’s algorithm performs 
better than Awerbuch’s algorithm.  
 

VI. CONCLUSION AND FUTURE WORK 

This paper compared two important algorithms, Tarry’s 
algorithm and Awerbuch’s algorithm, based on their 
performance for time complexity and message complexity by 
varying number of nodes and connection probability. The 
conclusion is, for small number of nodes and lower connection 
probability, time complexity for Tarry’s algorithm is better 
than Awerbuch’s algorithm, so it is advisable to use Tarry’s 
algorithm for small number of nodes and lower connection 
probability if aim is to maximize time complexity. But for 
large number of nodes and higher connection probability, time 
complexity of Awerbuch’s algorithm is better than Tarry’s 
algorithm. As far as message complexity is concerned, Tarry’s 
algorithm is always better than Awerbuch’s algorithm. 
Because of message overhead for “Ack” and “Vis” messages 
of Awerbuch’s algorithm, it always performs poor than 
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Tarry’s algorithm as far as message complexity is concerned. 
Also when the graphs become denser, both time and message 
complexity of Tarry’s algorithm, and message complexity of 
Awerbuch’s algorithm are quadratic to the number of nodes in 
the network, but the time complexity of Awerbuch’s algorithm 
is still linear to the number of nodes in the network. 
   Future work is to make program more efficient. Instead of 
calculating random 0’s and 1’s for whole matrix, program can 
be modified so that it just calculate random 0’s and 1’s for 
upper half of matrix, which can be than used for lower half of 
matrix as well. Also data was collected on three trials, which 
is not enough in real time scenario. Future work would be to 
collect data on 15 or more trials. Also instead of varying 
number of nodes, number of edges can be varied to collect 
data. And finally rather than on simulation engine, data can be 
collected by running experiments on real time distributed 
systems.  
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