A Comparative Study of Ricart-Agrawala and
Maekawa Distributed Mutual Exclusion Algorithm

Mohd Nor, Rizal
Computer Science Department
Kent State University
Kent, Ohio 44240
Email: http://www.cs.kent.edu/ rnor

Abstract—Ricart-Agrawala’s and Maekawa’s distributed mu-
tual exclusion algorithms were implemented to conduct exper-
iments comparing these two algorithms. It is expected that
Ricart-Agrawala’s algorithm would perform at 2 x (N — 1),
while Maekawa’s algorithm would perform at K x V'N, where
3 < K < 6. Simulations under different number of processes(/V)
and different contention load sizes(L), showed that Ricart-
Agrawala’s algorithm performs as expected while Maekawa’s
algorithm seems to vary from 3 x+/N to 4x+/N. The simulation
allows analysis of the data in message exchanges required to
enter critical section per node and to help in understanding the
underlying behavior of processors under different conditions.

I. INTRODUCTION

Common methods to implement distributed mutual exclu-
sion(DMX) is by using locks and by using tokens. One
of the first lock based DMX algorithm was introduced by
Lamport’s [1] DMX algorithm. In Lamport’s DMX algorithm,
processors requesting mutual exclusion sents messages to its
peers and waits for a reply if it is allowed to enter critical
section. Upon completing its critical section, it will notify
all its peers by releasing the request. This process is a three
message algorithm which consist of REQUEST, REPLY AND
RELEASE per critical section. Because of the three messages
required per critical section, the number of messages required
is 3% (N —1).

Ricart and Agrawala [2] suggested modifications of Lam-
port’s DMX algorithm to reduce the number of messages
required to enter critical section. Since a request is only
allowed to enter critical section when a process receives all the
REPLY messages from all its peers, a REPLY can be delayed
to a node only when a node is done with it’s critical section.
Hence, they suggested to reduce the number of messages to
only REQUEST and REPLY. Thus reducing the number of
messages required per critical section to only 2 x (N — 1).

Later Maekawa [3] reduce the number of messages required
to enter critical section by only a factor of v/N. He observed
that a process does not have to send message to all other
processes to lock them. Every process P; is assigned a request
set S; (quorum) of processes Maekawa showed that minimum
quorum size is v/N and can be found by solving finite
projective planes of N points. For a symmetric set, this can be

solved when N = K % (K — 1) + 1 (where k is a power of a
prime).

In Maekawa’s Algorithm, a process enters critical section if
it succeeds in acquiring locks from its entire quorum. (Request,
Locked Release). This reduces the message complexity of
Maekawa algorithm to 3x \/N . However, recall that Maekawa’s
algorithm has 6 types of messages (Request, Locked Release,
Failed, Inquire, Relinquish). The other extra 3 messages are
used to avoid deadlock. Hence in very high load, performance
could go as large as 6 * v/N.

This report is presented as follows. In section II we pre-
sented the experiment parameters used, the generation of
quorum sets, the assumptions use to create a realistic sim-
ulation. In section III, we present our findings of running
the simulation for various parameters and our analysis of the
results. Finally in section IV, we summarized our findings and
presented our future research interest in this area.

II. EXPERIMENT DESIGN

The objective of this experiment was to implement Ricart-
Agrawala and Maekawa Algorithm for the purpose of under-
standing the behavior of the algorithm in different number
of nodes(/NV) and different load factors(L). The program im-
plemented was run several times, with different experiment
parameters to collect statistical data. This data is used to plot
results and analyze the behavior of the algorithms.

A. Experiment Parameters and Expectations

1) Ricart Agrawala: The parameters used in Ricart-
Agrawala simulation started by varying the size of the system,
number of nodes(N). The number of nodes used varied from
5 to 50 nodes. In each increment of 5 nodes, I then varied
the size of contending nodes, load factor(L) with 1(node),
25%, 50%, 75% and 100% number of contending nodes. It is
expected, that in Ricart-Agrawala, the change in load factor(L)
will not affect the number of messages being exchanged
between nodes. In fact, I expect it to have a constant number
of messages being exchange in the system despite the change
in load factor. However, the change in the number of nodes(V)
should increase the number of messages being exchanged in
the system linearly with respect to the number of nodes in the
system.

2) Maekawa: The parameters used in Maekawa’s simu-
lation started by varying the size of the system, number of
nodes(N) for N = 7, 13, 21, 31, 57, 73, 91, 133 , 183, 307
, 381, 553, 871, 993. The chosen N are intentional since
these values would result in quorum sets that are symmet-
ric,pairwise,nonnull intersecting sets. I did not consider quo-
rum sets that are not symmetric since acquiring non-symmetric
quorum sets were not available. In each increments of NV, I
then varied the size of contending nodes, load factor(L) with
1(node), 25%, 50%, 75% and 100% number of contending
nodes. It is expected that Maekawa’s algorithm, the increase
in the number of nodes in the system would increase the
number of exchanged messages per critical section by a factor
of v/N. In fact, it is expected that when the load is just 1
node requesting critical section, the results should exactly be
3%v/N. However, it is also expected that as the load factor(L)
increases, the amount of messages required per critical section
should increase from 3 % v/N to a maximum of 6 x v/N.

B. Quorum Set Generation

Maekawa’s paper [3] did not provide methods for generating
the quorum sets. The quorum sets can be generated by solving
finite projective planes of N points. However implementation
of a generator was not trivial. Therefore in order to save
time, I have used data parse from a text file containing all
quorum sets. This data is acquired from Eric Moorhouse’s
website [4], who is currently a faculty member in Department
of Mathematics at University of Wyoming. The text file
contains the set of known solutions for number of nodes N =
7,13,21,31,57,73,91,133,183, 307, 381, 553, 871, 993.

C. Simulation

The simulator implemented is responsible to handle creation
of nodes, selection of nodes by random to be run, and
assigning channels to the nodes. A pseudo-random number
generator was used to generated a random instance to be run.
Each instance of a node was seeded with the Systemtime x
100 * processID. The use of a random number generator was
necessary to make sure that our simulations were random, such
that no two runs have the same computations.

To ensure that the simulation executed as according to the
specifications of the algorithm, the channel queues should be
implemented differently for each algorithm. For example, in
Ricart-Agrawala the channel link is non-fifo. It was then neces-
sary to allow Ricart-Agrawala to have messages arriving not in
order sent. To implement this feature, Ricart-Agrawala channel
link uses a different kind of queue that would randomized the
ordering of messages when a send message is issued. When
a node sends a message, it will insert the element in random
order of the queue. Thus the head of the queue might change
after a send message. Figure 1 illustrate the algorithm used to
implement this feature during broadcast of a request.

Eventhough Maekawa uses a fifo channel, it is dependent
on a priority queue to keep track of the locking sequence of its
members in the quorum set. Hence a separate comparator was

needed to handle priority by sequence number and process id
of each node’s request.

private wrodid :.El.'l.d._zequ.c::{:l {

{¢ send ragquest to all nodes
/¢ imt ID: is the nod=s ID
Jf int seq: is current reguest seq no.
For{int i=0:3<M:i++}{
AE{L =IO} }{
'/ To the ootgoing channel link
aqueus = channels[ID] [1] .getQueae= () ;
int x=0;
int size = guoeuns.size();
if (zsige!=0) {
{frandom location in the gueos

xr = gensrator. nextInt{sige=)

}

mesSsSags =

"EBJTEST"+ seq + ID;

{ imsert into random location,
'} because this algorithm is not FIFQ
gquens.add(r, =lemp=nt };

Fig. 1. Non-fifo simulation algorithm.

III. RESULTS
A. Ricart and Agrawala

The results of the experiment for Ricart-Agrawala algorithm
for varying number of nodes, N and varying load factors,L is
shown in figure 2. It can be seen from the table that for any
given fixed number of nodes, N, varying the load factor L
does not change the number of messages being exchange in
the system. In fact, each row of number of nodes, gives exactly
the same results of number of messages per critical section for
any given load factor, L. The results is as expected, since even
though the load factor, L increases, and hence more contending
nodes are sending messages, the amount of messages sent and
receive by each node requesting critical section remains the
same.

Figure 3 shows a graph of load factors, L vs. number of
nodes, V. It shows the messages exchanges for each critical
section. The graph shows that regardless for For any given
fixed load factor, L, varying the number of nodes gives a
linear change in the number of messages per critical section.
The results shows that the change is exactly 2 x (N — 1)
without any variance. This results is as expected because each
node requires to send to exactly N number of nodes twice for
Request and Reply. Hence, the graph shows a linear growth
regardless the load factor, L.

B. Maekawa

Figure 5 shows number of messages per critical section vs.
load factor,L. In the graph, it can be seen that an increase
in load factor,L increases the messages per critical section.
This is true until it reaches a threshold value of load factor of
50%, L = 50%. After the threshold value of 50%, the graph
seems to be constant. This results is unexpected since we were

WIiCritical Section
M L=1{node) L=25 L=50 L=75 L=100
5 8 8 8 8 8
10 18 18 18 18 18
15 28 28 28 28 28
20 38 38 38 38 38
25 43 48 48 48 48
30 58 58 58 58 58
35 68 68 68 68 68
40 78 78 78 78 78
45 a8 88 88 88 88
50 ag 98 98 98 98

Fig. 2. Table of data for Ricart-Agrawala.

Message Complexity for each Critical Section
120

100

/ ~+L=1(node)
|L=25
& aL=50
»L=75
x| =
w0 L=100

Load

T
0 10 20 30 40 50 60

Humber ofHodes

Fig. 3. Load vs. Number of Nodes

expecting a linear growth as the load factor, L increases. To
analyzing the threshold point, the ratio of messages per critical
section to the quorum size is calculated. It is found that the
ratio grows from 3 to 4. As in figure 4, a ratio for N = 57
and the ratio of messages per critical section to Quorum size
of 7 is calculated. The ratio shows a slow increase from 3 to
4.

|L=1(node) =25 (=50 =75 =100
Ratio 3 34503 | 30006 | 3.96 4

Fig. 4. Ratio of Number of messages per critial section to quorum size.

It is expected that the growth would be linear from K s+/N,
where 3 < K < 6. However, the results was not as expected
and it shows that the growth seems to grow only to a point of
K = 4. Looking at the generated output file, it can be seen that
as the load factor, L increases, most nodes requesting nodes
will fail and seems to have more failed messages. This extra
messages increases the messages required per critical section.
However, when the load factor goes above 50%, it seems that
most of the nodes are participating. Even in 100% load factor,
it doesn’t seem to have to wait for all nodes to enter CS. Thus
it is doubtful, that a high load would result in K = 6.

Figure 6 shows number of messages per critical section vs.
number of nodes,N. The Message complexity changed in the
order of square root of N. Regardless of the load size, there is
a trend of growth for N. The growth is close to a square root
of N. This behavior is because as IV increases it will require
more messages to be sent to the quorum. The quorum size is
approximately equals to v/N.

3000

500

2000

.00

Messages per CS

1000

.00

000

3000

2500

2000

1500

Messages per CS

1000

500

Messages per CS

-

—

MNurber of Nodes

-7 =13

e

L= ode) =28 =50

Load Factor, L

Fig. 5. Messages/CS vs. Load Factor, L.

MessagesiCS vs. Number of Nodes

P

Load Factor

oo

—+—=1(nade)

-5
L=50
L=75

—— =100

Humber of Hodes, N

Fig. 6. Messages/CS vs. Number of Nodes, V.

IV. CONCLUSION AND FUTURE RESEARCH

In this comparative study, it is found that even though
Ricart-Agrawala requires more messages, it is however, sim-
plistic and assures constant performance even in high load.

Maekawa, on the other hands is much more difficult to
implement, however, provides fewer messages per critical
section even in high load. It is observed that even in high
load it seems to perform by at most 4 * /N even though the
expected upper bound is 6 v N

In this study, the quorum sizes were chosen such that the
quorum size are symmetric for all sets. A Study of Maekawa’s
algorithm, when the quorum size is not entirely symmetric
is a research I intend to pursue in the future. There are
many ways to generate a non-symmetric quorum from an
optimized quorum size, however, analyzing which method is
most suitable for different scenarios would allow us to create
possible practical applications.

Due to its simplistic nature of Ricart-Agrawala, additional
algorithm can be used to make Ricart-Agrawala to work in
practical network applications. In the future, it would be
interesting to study the effects of nodes synchronization for
the insertion or deletion of a node in the system. Making
Ricart-Agrawala more robust would allow it to be used for
practical network implementations.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, 1978.

[2] G. Ricart and A. K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Commun. ACM, vol. 24, no. 1, pp.
9-17, 1981.

[3] M. Maekawa, “A n algorithm for mutual exclusion in decentralized
systems,” ACM Trans. Comput. Syst., vol. 3, no. 2, pp. 145-159, 1985.

[4] “Projective planes of small order,”
http://www.uwyo.edu/moorhouse/pub/planes/.

