
ANALYSIS OF SUZUKI-KASAMI AND RAYMOND TREE TOKEN BASED

DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS

Mahesh Mahabaleshwar

Computer Science

Kent State University,Ohio

e-mail: maheshbhatsoori@gmail.com

Abstract—Suzuki-Kasami and Raymond Tree Algorithms are

token based Distributed Mutual eXclusion Algorithms in

which a process(a node) in a distributed system can enter the

critical section only if it is in the possesion of a token. The

token is obtained by a node using message passing mechanism.

Suzuki-Kasami, a broadcasting algorithm, requires N messages

and Raymond Tree, a non broadcasting algorithm requires

approximately 4 messages per critical section entry on high

load. Suzuki-Kasami algorithm is applied on completely

connected topology and Raymond Tree algorithm is applied on

Star, Chain and an arbitrary Tree topology.

Keywords- critical section, PRIVILEGE, star, chain

 Introduction

In Suzuki-Kasami algorithm, every node requesting for

entry into the critical section braodcasts the REQUEST

message to all other nodes in the system. The node holding

the token, if it has completed its execution in critical section,

sends back the token to the requesting node by sending the

PRIVILEGE message.PRIVILEGE message consists of

queue of requesting nodes and array of sequence numbers for

which last request was granted for each node. A total of N

messages are required for each node to enter critical section

i.e. (N-1) REQUEST messages and 1 PRIVILEGE.
In Raymond Tree algorithm, the topology is a tree or a

spanning tree derived from a completely connected
network.Each node has a variable HOLDER which indicates
the location of the token relative to the node itself. Each node
requesting for entry into the critical section sends REQUEST
message to its HOLDER and the HOLDER in turn forwards
the REQUEST to its HOLDER and this continues until the
REQUEST reaches the actual holder of the token. The token
holder sends the PRIVILEGE message to the requesting
node at the head of the queue and if there are any requesting
nodes in its queue sends the REQUEST message behind the
PRIVILEGE message. At high load, approximately 4
messages are required for each node to gain entry into the
critical section. At low loads, number of messages required
depends on the topology of the network. For each
REQUEST message, there will be a corresponding
PRIVILEGE message. Hence the number of PRIVILEGE
messages will be equal to number of REQUEST messages.

The Process of Analysis

In the process of Analysis, data was collected by

executing the algorithm for 10 times and taking the average
of total number of messages which were sent for each
execution. Messages considered were of two categories -
REQUEST and PRIVILEGE. In Raymond Tree algorithm,
INIT messages which are required for initializing the
HOLDER variable for each node at the beginning of the
algorithm are not considered for the analysis process.
Synchronization delays or Waiting times are not considered
for the analysis since the implementation of the above
algorithms was just a simulation and non-real time. Data was
collected at different loads like 25%,50%,75% and 100%
and for different system size starting from a size of 10 to 100
in the increments of 10.

Results for Suzuki-Kasami Algorithm

 Suzuki-Kasami - number of messages

 at different loads

The term “load” means number of processes

simultaneously requesting for entering the critical section.
The above graph indicates that as the system size increase,
number of messages exchanged increase quadratic manner.
For example, at 100% load for a system size of 100 - 10,000
messages are required in total for all processes to enter
critical section.

Suzuki Kasami - All Loads Together

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s SK - 25%

SK - 50%

SK - 75%

SK - 100%

 Suzuki-Kasami – number of messages

 per CS entry

The above graph indicates that number of messages

required for entering critical section for each process is equal
to N where N is number of nodes in the system.

Results for Raymond Tree Algorithm for Star topology

 Raymond – number of messages

 at different loads for Star topology

The above graph indicates that at 100% load, the total

number of messages for each process is constant and the
resultant graph is linear. For other loads as well, the graph is
almost linear.

The next graph indicates that at 100% load, average

number of messages required for entering into critical section
for each node is approximately 4. It also indicates the range
of number of messages per critical section entry varies from
2 to 4.

 Raymond – number of messages
 per CS entry for Star topology

Results for Raymond Tree Algorithm for Tree topology

Raymond Tree algorithm can be applied on any tree

topology like binary tree or any arbitrary tree topology. For
analysis, an arbitrary topology with random number of
depths and random number of children for each node is
considered.

 Raymond – number of messages
 at different loads for Tree topology

 The above graph indicates that number of messages

exchanged for 50% and 75% load is higher than number of
messages exchanged for star topology since there would be
many depths in a tree topology as compared to only 2 in star
topology, the REQUEST message may be forwarded from
one end to another and the PRIVILEGE message in opposite
direction.

Msgs per CS Entry

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s 25%

50%

75%

100%

Raymond - Star - All Loads

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s 25%

50%

75%

100%

Msgs Per CS Entry - Star

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s 25%

50%

75%

100%

Raymond - Tree All Loads

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s 25%

50%

75%

100%

 Raymond – number of messages
 per CS entry for Tree topology

In the above graph, at 100% load, the number of

messages exchanged for entering critical section by each
node is approximately 4. For lower loads, more number of
messages is required when compared to star topology.
Hence, more the number of depths, at low loads higher
number of messages are required.

 Raymond – number of messages
 at different loads for Chain topology

 In the above graph, number of messages required for all
loads except 100% is more than number of messages for tree
or star topologies. This is because nodes are arranged in the
form of a straight line in chain topology. More number of
messages are required if the request has to travel from one
end to the other.

In the next graph, it signifies that the performance of
chain topology is lower than tree and star toplogy for lower
loads. This is because, if the requesting node is at one end of
chain and the token holder is at the other end, then there will
be N-1 REQUEST and N-1 PRIVILEGE messages for one

critical section entry. Hence maximum number of messages
per critical section entry can be 2(N-1) messages.

 Raymond – number of messages
 per CS entry for Chain topology

Coding Challenges

 Creation of an arbitrary tree was one of the challenges
faced during the implementation of Raymond Tree
Algorithm. Here is a brief description of how this module
was implemented. An arbitrary root node was generated.
Random number of depths was generated. Then, random
number of nodes was generated for each depth. At each
depth, nodes were randomly assigned a parent node
belonging to the previous depth.

Following were other challenges faced during
implementation:

- Initializing the HOLDER variable in each node by
sending INIT message to all processes by traversing
the tree.

- Randomization of requests to simulate situations
closer to real world.

- Re-use of existing code implementation of Random
Flood project in which random number of processes
send messages to random number of other
processes.

Future Work

 Future work includes applying Raymond Tree algorithm
on desired tree topology. For example it shall be possible to
input the tree structure so that when the algorithm is applied
on these structures, a much clearer conceptualization can be
achieved. Future enhancements also include creating
customized request timing which will enable study of worst
case scenarios. Creating worst case scenarios and testing
them alone can also be considered in future. The
implementation can be enhanced to make Raymond Tree
work for completely connected graphs in which a spanning
tree can be formed and algorithm can be applied on that.

Msgs per CS Entry - Tree

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s 25%

50%

75%

100%

Raymond - Chain All Loads

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s 25%

50%

75%

100%

Msgs per CS Entry - Chain

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60 70 80 90 100

Nodes

M
e
s
s
a
g
e
s 25%

50%

75%

100%

REFERENCES

[1] A Tree-Based Algorithm for Distributed

Mutual Exclusion - KERRY RAYMOND

[2] A Distributed Mutual Exclusion Algorithm –

ICHIRO SUZUKI and TADAO KASAMI

