
Implementation of Lamport’s Scalar clocks and Singhal-

Kshemkalyani’s VC, Algorithms (May 2007)

Saleh.M.Alnaeli

Kent State University

Computer Science Department

salnaeli@kent.edu

Abstract—The causality between events in distributed systems

is one of the essential concepts for analyzing distributed operating

systems. This relation in distributed systems is tracked using the

logical time. This paper discusses some ways used for

implementing the logical time, Lamport’s Scalar clocks and

Singhal-kshemkalyani’s vector clock. Experiments were made on

S-K vector clock and regular vector clocks to study their behavior

under some different arguments such like, exchanged messages

number, processes number, and involved processes number. We

show that S-k achieves high efficiency with relatively low number

of exchanged messages and low number of involved processes in

the computation. We also show that the way a computation is

constructed plays big role in choosing the technique that must be

used. Moreover we introduce a new approximated equation that

can help determining the success in using S-K technique.

Index Terms—Involved processes, bandwidth, events, and

computation

I. INTRODUCTION

AUSALITY RELATION BETWEEN EVENTS in distributed

systems is a strong concept for analyzing and drawing

interfaces about a computation. The knowledge of that relation

between events helps solve a variety of problems in distributed

systems (e.g. Algorithms design, progress monitoring,

concurrency measuring [1].) In distributed systems the

occurrence of events is higher while the events execution time

is smaller. Consequently, the using of physical clocks may not

help producing an accurate capture of the causality relation

between events [1]. The method of using physical clocks

suffers from pitfalls like clock drift. Therefore logical clocks

are used [3]. In a distributed system that uses logical clock,

each process has its own logical clock that increased according

some rules. Every events will be assigned a timestamp such

that the event happens before will have a smaller timestamp

than the one happens after if they are causally related. There

are many techniques for implementing logical clocks, some of

them, Lamport’s scalar, vector clocks and S-k, will be shown

briefly, and some experiments are done as well.

II. IMPLEMENTING LOGICAL CLOCKS

Logical clocks can be implemented using a local data structure

at every process in the distributed system to represent logical

time and set of rules that used to update the data structure.

Using this time other process can synchronize themselves with

it, and relay on that logical time to order the events. Ordering

of events is important to be known to analyze the

computations. Systems of logical clock differ in their

representation of logical time and in the set of rules used to

update the time.

A. LAMPORT’S SCALAR TIME.

 It was proposed by Lamport in 1978 trying to order events

in distributed system. Each a process P has its own logical

clock variable C that value is assigned with each event at that

process. One of the major problems in scalar clocks is that

partially consistency. We mean by that, if we know the clock

value it is not guaranteed that we can know the events order. In

other words, if we have events a, b, if a→b, then C(a) < C(b)

but if C(a) < C(b) we can determine weather a→b or not.

There are two rules used to update the clock value: Rule,

before executing event update Ci so, Ci := Ci + d (d>0).

Rule2, attach timestamp of the send event to the transmitted

message when received, timestamp of receive event is

computed as follows: Ci := max(Ci , Cmsg) and then execute

Rule1.

B. VECTOR TIME

Was developed by Fidge , Mattern and Schmuck 1988 [2].

In vector clock system, the time is represented by one

dimension vector of positive integer numbers. Each process P

maintains a vector v such that v[i] is the value of clock of the

local process P. Other vector elements reflex the most recent

knowledge of the local process about other processes. Like

Scalar time, vector time system has a set of rules. Rule1: the

local value is increased by one after a local event execution.

Rule2: if the event is send, the local value is increased and a

copy of the vector is attached with the message being sent.

Rule3: once the message is received, the recipient of the

message updates its local vector such that each element

will update its value by the coming one if the coming is

grater, otherwise it keeps the current value. Then the recipient

will update its value by taking the maximum value among the

whole vector including it self and increment it by one. A new

C

technique has been introduced for more efficient

implementation to the vector clock by singhal and

Kshemkalyani.

C. SINGHAL- KSHEMKALYANI VC IMPLEMENTATION (S-K.)

It was introduced by Mukesh Singhal and Ajay

D.Kshemkalyani in 1991 as an efficient implementation of

vector clocks. S-K states that, instead of sending the whole

vector with the message, only changed elements should be sent

with their ID’s, keeping the same update rules that used in

vector clocks. In addition, each process maintains two vectors:

LS[1..n] to keep the value of the local process when the last

message was sent to another process, and LU[1..n] to hold the

most recent value of the sender of coming message. So, each

sender to a message needs to send with the message only the

elements that meet the condition: {(x,vti[x])| LSi[j] < LUi[x]}

such that x is all processes but the recipient of the message

being sent j.

The sent vector contains the processes’ Id’s and Clock

values of changed processes.

III. IMPLENTATION OF SCALAR’S AND S-K CLOCKS

A. SCALAR LOGICAL CLOCKS APPLICATION

An application was developed in C++ and was verified in

different ways: 1. checking its consistency using a function

compares the new value of previous one locally and with the

sender in receive event. 2. results were compared with vector

clock application. Computations were entered from input text

file Generated manually and using a computation generator

developed in C++ randomly (random sender and receiver).

Each event is constructed according the following scheme:

EventType,SenderID,ReceiverID such that: EventType is 1

for internal event, 2 for send event and 3 for receive event.

(Example:3,7,8 means an event to receive a SMS was sent by

Pcocess 7 to 8.) Also order of the events can be changed in the

InputFile, just we need to make sure that the receive event is

preceded by send event. Sending to a process it self is assumed

as internal event. (Example 2,5,5.)

B. VECTOR CLOCKS:

An application was also developed in C++ and was verified

using pre-known computation. Computations were entered

from input text file generated manually and using a

computation generator developed in C++ randomly (random

sender and receiver). In similar way that used for scalar events

format with an extra field:

EventType,SenderID,ReceiverID,EventId such that:

 EventType is 1 for internal event, 2 for send event and 3 for

receive event. EventId is number of the event when the

message has been sent. (Example:3,7,8,4 means an event to

receive a SMS was sent by Process 7 to 8 and the event was the

fourth send event.) Order of the events can be changed in the

InputFile just care is needed to ensure that the receive event is

preceded by a send event and sending to a process it self is an

internal event. (Example 2,5,5,4). In addition, Scalar

application was embedded in this application for verification

purposed.

C. S-K APPLICATION

It is implemented in C++ and was verified in different ways:

Results were compared with others generated by the

combined Scalar and vector clock application. And, Known

examples and random computations were used for that

purpose. Computations were entered from input text file and

were generated using a computation generator developed in

C++.

IV. EXPERIMENTATION

 In this section, we provide performance evaluations of S-K

technique under various parameters and against regular vector

clock application. The simulations were performed using our

applications which were developed by C++ and executed in

local machine with windows vista installed. We have generated

our computation using two computation random generators.

The computations were constructed in a way that enforces the

algorithms uses as much as resources needed to make more

pressure on the application. Performance metrics evaluated

include Stamps size used (Bandwidth) in units (1 unit=32

bytes) and conditions of varying processes number, messages

number, and number of the involved processes in the

computation. It’s expected that S-K in the worst case will

perform as VC.

Table 1. Default Simulation Parameters

 A. EVALUATION OF THE EFFECT OF NUMBER OF MESSAGES

AND NUMBER OF PROCESSES WITH SEQUENCE1

COMPUTATIONS

The computation were constructed by sequence1 where the

send events where performed first and then the receipt events.

2500 messages have been used with 50 lost. Figure1

shows that S-K out performance regular VC even with

changing the number of processes and involved processes as

Parameter Default Values

Processes numbers 50-100 // constant 50

Simulation Cycles 15

Messages Number 500-2500

Involved processes in

computation

100%-50% // 100%-

20% (10-50 of 50)

Events sequence 1 All Send to all and all

receive (50 lost)

Event sequence 2 Randomly send and

direct receive

well which contradicts with the equation that were introduced

by S-K in their paper.

B. NUMBER OF MESSAGES AND NUMBER OF INVOLVED

PROCESSES WITH SEQUENCE2 COMPUTATIONS AND

CONSTANT NUMBER OF PROCESSES 50.

The computations were constructed by sequence2 where

Sender and receiver were randomly picked and events executed

in away the after sending, message is directly received to btain

as much updates I the vector elements as possible. A constant

number of processes have been used, 50, and each time we

change the number of the involved processes in the computa_

tion from 10-50, and number of the sent messages in whole

system from 500-2500. Number of the cycles were used was

15, to get accurate results since random computation is used.

As we can see from figure2, when the number of the involved

processes is less than about 70%, S-K outperforms the regular

VC. After increasing number of the involved processes, S-K

becomes inefficient. Also, number of the message looks

involved in this observation, when number of the messages

sent is less than 500, S-k does well the send events where

performed first and then the receipt events. 2500 messages

have been used with 50 lost.

V. SUMMARY AND CONCLUSION

In this paper, we presented the concept of logical time clocks

and some technique used to represent it. Also, how can S-K

can be used to drop the need to send all the clock vector in

vector clock for efficient use of the bandwidth. Our

experimentations have shown also interesting observations

summarized as follows:

 A. The sequence of the events plays big role in determining

the efficiency of S-K.

B. Number of the involved processes in the computation can

affect S-K performance.

C. For low number of messages, S-K seems fine.

D. When number of involved processes is about 70% and

number of messages close to 20 times of all system processes

then S-K becomes a weak.

E. The efficiency equation is not always applicable event in

localized computations.

VI. FUTURE WORK

 Implementation of Singhal-Kshemkalyani’s technique

should be studied more using more complex computation to

derive adequate equation that might be more precise in

valuating the situation where that technique can help.

 Also, developing of the application it self can play big role for

getting an optimal advantages of this technique.

APPENDIX

The source code of the applications used in the

experimentations including the computation generators, and

our presentation of this project.

ACKNOWLEDGMENT

Thanks to Prof.Nesterenko for his nice manner, and my family,

and friends for their patience and support.

References
[1] http://web.cecs.pdx.edu/~black/CS410ds/papers/raynalOSRLogicalClock

s.pdf

Michel RAYNAL IRISA, Campus de Beaulieu

[2] Logical clock, Adv OS course slides. Prof. Mikhail Nesterenko
 http://deneb.cs.kent.edu/~mikhail/classes/aos.s10/

[3] Manas Hardas . a paper in same subject 2007. Kent State University.

Processes No vs memory spent with 2500 SMS's and 50 lost

0

50000

100000

150000

200000

250000

300000

0 50 60 70 80 90 100

processes No

M
e
m
o
ry
 i
n
 u
n
it
s

VC

S-K

Figure2. the effect of #involved processes and #messages. With 50

processes system. Dots lines for the regular vector clocks and

continues line for S-K

Figure1. the effect of #involved processes and #messages. With

varied number of processes systems.

