
Distributed and hierarchical
deadlock detection, deadlock 
resolution

n detection
u distributed algorithms 

F Obermarck’s path-pushing
F Chandy, Misra, and Haas’s edge-chasing

u hierarchical algorithms 
F Menasce and Muntz’s algorithm
F Ho and Ramamoorthy’s algorithm

n resolution

Distributed deadlock detection

n Path-pushing
u WFG is disseminated as paths — sequences of edges
u Deadlock if process detects local cycle

n Edge-chasing
u Probe messages circulate
u Blocked processes forward probe to processes holding 

requested resources
u Deadlock if initiator receives own probe

Obermarck’s Path-Pushing
n Individual sites maintain local WFGs

u Nodes for local processes
u Node “Pex” represents external processes

F Pex -> P1 -> P2 ->P3 -> Pex
n Deadlock detection:

u site Si finds a cycle that does not involve Pex – deadlock
u site Si finds a cycle that does involve Pex – possibility of a deadlock

F sends a message containing its detected cycle to all other sites
• to decrease network traffic the message is sent only when 

P1 > P3
• assumption: the identifier of a process spanning the sites is 

the same!
F If site Sj receives such a message, it updates its local WFG 

graph, and searches it for a cycle
• If Sj finds a cycle that does not involve its Pex – deadlocks
• If Sj finds a cycle that does involve its Pex, it sends out a 

message…
n Can report a false deadlock

Chandy, Misra, and Haas’s Edge-Chasing
n When a process has to wait for a resource (blocks), it sends a 

probe message to process holding the resource
n Process can request (and can wait for) multiple resources at once
n Probe message contains 3 values:

u ID of process that blocked
u ID of process sending message
u ID of process message was sent to

n When a blocked process receives a probe, it propagates the probe
to the process(es) holding resources that it has requested
u ID of blocked process stays the same, other two values updated 

as appropriate
u If the blocked process receives its own probe, there is a 

deadlock
n size of a message is O(1)

Performance evaluation of 
Obermarck’s and Chandy-Misra-Haas 
algorithms
n Obermarck’s 

u on average(?) only half the sites involved in deadlock send 
messages 

u every such site sends messages to all other sites, thus
F n(n–1)/2 messages to detect deadlock
F for n sites

u size of a message is O(n)
n Chandy, Misra, and Haas’s

u given n processes, a process may be blocked on up to (n-1) 
processes, thus
F m(n–1)/2 messages to detect deadlock

• m processes, n sites
u size of a message is 3 integers

Menasce and Muntz’
hierarchical deadlock detection

n Sites (called controllers) are organized in a tree
n Leaf controllers manage resources

u Each maintains a local WFG concerned only about its own 
resources

n Interior controllers are responsible for deadlock detection
u Each maintains a global WFG that is the union of the WFGs

of its children
u Detects deadlock among its children

n changes are propagated upward either continuously or 
periodically



Ho and Ramamoorthy’s
hierarchical deadlock detection

n Sites are grouped into disjoint clusters
n Periodically, a site is chosen as a central control site

u Central control site chooses a control site for each cluster
n Control site collects status tables from its cluster, and uses the 

Ho and Ramamoorthy one-phase centralized deadlock detection 
algorithm to detect deadlock in that cluster

n All control sites then forward their status information and WFGs
to the central control site, which combines that information into a 
global WFG and searches it for cycles

n Control sites detect deadlock in clusters
n Central control site detects deadlock between clusters

Estimating performance of deadlock 
detection algorithms

n Usually measured as the number of messages exchanged to 
detect deadlock
u Deceptive since message are also exchanged when there is 

no deadlock
u Doesn’t account for size of the message

n Should also measure:
u Deadlock persistence time (measure of how long resources 

are wasted)
F Tradeoff with communication overhead

u Storage overhead (graphs, tables, etc.)
u Processing overhead to search for cycles
u Time to optimally recover from deadlock

Deadlock resolution
n resolution – aborting at least one process (victim) in the cycle and 

granting its resources to others
n efficiency issues of deadlock resolution

u fast – after deadlock is detected the victim should be quickly 
selected

u minimal – abort minimum number of processes, ideally abort less 
“expensive” processes (with respect to completed computation, 
consumed resources, etc.)

u complete – after victim is aborted, info about it quickly removed 
from the system (no phantom deadlocks)

u no starvation – avoid repeated aborting of the same process
n problems

u detecting process may not know enough info about the victim 
(propagating enough info makes detection expensive)

u multiple sites may simultaneously detect deadlock
u since WFG is distributed removing info about the victim takes 

time


