Classification of Distributed Systems Properties of Distributed Systems

- motivation: advantages of distributed systems
- Classification
 - architecture based
 - on interconnection
 - on memory access
 - design based (OS models)
- Design issues of a distributed system
 - transparency
 - heterogeneity
 - autonomy
 - others

Classification of Operating Systems (cont.)

- "True" Distributed Operating System
 - Loosely-coupled hardware
 No shared memory, but provides the "feel" of a single memory
 - Tightly-coupled software
 One single OS, or at least the feel of one
 - Machines are somewhat, but not completely, autonomous

Why Use Distributed Systems? What are the Advantages?

- Price / performance
 - Network of workstations provides more MIPS for less \$ than a mainframe does
- Higher performance:
 - *n* processors potentially give *n* times the computational power
- Resource sharing:
 - Expensive (scarce) resources need not be replicated for each processor
- Scalability:
 - Modular structure makes it easier to add or replace
 - processors and resources
- Reliability:
 - Replication of processors and resources yields fault tolerance

- Tightly coupled ≈ parallel processing
 - Processors share clock and memory, run one OS, communicate frequently
- Loosely coupled ≈ *distributed computing*
 - Each processor has its own memory, runs its own OS (?), communicates infrequently

Classification of Multiprocessors Based on Interconnection Network

- Three main types of
 - interconnection:
 - Bus
 - Switch (crossbar, multistage switch)
- Bus-based interconnection
 - Simple
 - · Bus is a broadcast medium
 - · Contention for access to bus (does not scale well)
 - Complicates caches (need snoopy cache)

- Corssbar switch:
 - Usually no contention for memory access — multiple memories can be accessed in parallel
 - Simple routing
 - Number of crossbar switches grows quadratically

Classification of Multiprocessors Based on Interconnection Network (cont.)

- Multistage switch
 - Reduced number of switches
 - √[®] Increased
 - communication delay
 - A Increased contention
 - for memory access
 - Complex network

Classification of Multiprocessors and Multicomputers, Based on Memory Access

- UMA Uniform Memory Access
 - · Main memory is at a central location
- NUMA Non-Uniform Memory Access
 - Main memory is physically partitioned, with each partition
 attached to a different processor
 - Each processor can access its own memory (fast), or the memory of another processor (slow)
- NORMA No Remote Memory Access
 - Main memory is physically partitioned, with each partition
 attached to a different processor
 - A processor can not access the memory of another processor

Goals of a Distributed System: Transparency

- Access transparency
 - User is unaware whether a resource is local or remote
- Location transparency
 - · User is unaware of physical location of hardware or
 - software resources
 - location transparency
 - user mobility
- Migration transparency
 - User is unaware if OS moves processes or resources (e.g., files) move to a different physical locations
- Replication transparency
- Resource duplication is invisible to users
- Concurrency transparency
- · Resource sharing is invisible to users

Classification of Multicomputers Based on Interconnection Network

- Two main types of interconnection:
 - Switching network
 - LAN (local area network)
- Switching network
 - Grid
 - n^2 nodes arranged as an $n \ge n$ grid
 - Maximum route proportional to n²
 - Host messages take multiple hops
 - Hypercube
 - A *n*-degree hypercube (*n*-cube) consists of 2ⁿ nodes (processors) arranged in an *n*-dimensional cube, where each node is connected to *n* other nodes
 Maximum route proportional to *n*
 - Host messages take multiple hops

Distributed System Models

- Minicomputer model
 - Several minicomputers connected to a network, each with several terminals
- Workstation model
 - · Many workstations connected to a network
 - Particularly useful if users can use remote workstations (process migration)
- Workstation-server model
 - Same, plus more some machines run as servers: file server, print server, etc.
 - Good resource sharing (printers, etc.), cheap workstations (don't need big disks)
- Processor-pool model
 - Terminals connect to network, pool of processors connect to network

Goals of a Distributed System: Support Heterogeneity

- Heterogeneity means "consisting of a number of completely different elements"
- Computer hardware heterogeneity
 - Different computer architectures (e.g., instruction sets, data representations) of components in distributed systems
- Network heterogeneity
 - Different transmission media, signaling, network interfaces, and protocols
- Software heterogeneity
 - Different operating systems, application programs
- ∠ Support for heterogeneity remains a mostly unsolved problem

Goals of a Distributed System: Right Degree of Autonomy

- Autonomy is a measure of the independence of the components in a distributed system
 Low degree of autonomy = dependent
- 1 Inflexible $^{\circ}$ Little robustness in the presence of failures
- High degree of autonomy = independent
 - More flexibility
 - High redundancy
- Brigh redurbancy
 May still require some central control ⁻⊕ Poor resource sharing and coordination
 ∠ Determining the right degree of autonomy in a distributed system is a difficult problem

Other design issues of a distributed system

- Fault tolerance:
 - fault avoidance
 - fault tolerance
 - redundancy
 - distributed control
 - fault detection/recovery
- flexibility needed
 - to ease modification
 - · ease enhancement
- performance
 - batch if possible
 - cache when possible
 - minimize network traffic
 - parallelize

Other properties of a distributed system (cont.)

- scalability
 - avoid centralized entities
 - avoid centralized algorithms
 - spread the load
- security
 - hard because there is no single point of control/authentication

 - . the communicating parties should be sure of each other identity (be able to trust each other)
 - the communicating parties should be sure that the communication is not compromised (altered or eavesdropped)