

Maekawa's Algorithm

Jordan Adamek

Maekawa's DME Algorithm

● Permission-based distributed mutual exclusion

● Communication through Channels

● 6 Major Messages:

– 3 for main functionality: Request, Grant, Release

– 3 for deadlock avoidance: Inquire, Failed, Yield
● Requests are time-stamped

● Quorums

Billiard Quorums

● Each quorum is of size root(2 * N + 1)

– e.g: for 40 processes, quorum size = 9

● Quorum constructed from so-called “Broken
Billiard Path”

– Normal billiard path is the diagonal
billiard shot from x or y axis to target
process in a modified (odd) grid

– Broken path ensures quorum
uniqueness for processes on an
otherwise equivalent path

Experimental Procedure

● Interleaving Semantics

● 40 Processes

● Billiard Quorums of size 5

● 1,000 states per computation

● Experiments varied system load from 1 to 40 (system size):
– CS requests scheduled in an array to be sent out over the course of the computation

– Number of total requests sent determined by load

● 10,000 computations per data point (load value)

● Measured two metrics: latency and through-put (efficiency)

Latency
States from CS Request to CS Access

Throughput
CS Accesses per Action Executed

Future Work

● Vary any of the following:

– Quorum size and construction method (original
Maekawa Quorums vs. Billiard Quorums)

– System size

– Execution semantics (Synchronous, Power Set)
● Search for alternative/less costly methods to

implement deadlock avoidance

Simulation Structure

● Four main classes comprise the engine:
– Action: Guarded action using a boolean guard method and a void

command method. Contains a pointer to the process which defines it;
both methods act only on this pointer.

– Process: Distributed process which contains all local variables and
assigned actions defined by the target algorithm.

– Network: Comprises the collection of processes and defines any initial
relationships between them, such as neighbors in a graph or quorum
members.

– Engine: Contains a pointer to a network object and runs computations for a
given number of maximum states (or until deadlock). Each state, checks
for enabled processes and, according to the engine's execution
semantics defined by an enumerable member variable, calls for
processes to execute a random enabled action.

Simulation Structure (cont.)

● Main classes extended for implementation of
Maekawa's algrorithm.

● Quorum and Channel classes defined.

● Each action in Maekawa's extended from the base
Action class, definining the pure virtual methods guard
and command.

● Maps (associative arrays) used to relate quorum
members to associated variables (such as waiting for
permission, <failed> messages received, etc.).

Class Co-dependence

● Problem: we wish to define two classes, A and B,
which should contain an object whose class is of the
other.

● In sequential C++ programming, a class must be
already declared for an object to be declared with that
type.

● Class A must be defined before class B for B to have
member variable of class A, but likewise must be done
for class A to contain a variable of class B; one or the
other must be defined first.

Class Co-dependence

Solution:
● Empty declare one of the classes, e.g class A
● Define B with a pointer to an object of class A
● Define class A with any number of objects of

class B
● Both implementations must follow all three

declarations

Use of Co-dependence in
Distributed Algorithm Simulation

● Action class contains a pointer to a Process, and may freely
reference the exact process that defines in its guard and
command methods without any iteration over the network or
other means.

● Processes contain arrays of Action pointers. May iterate over
these actions to check for enabled ones, and execute their
commands without having to know the exact nature (or name)
of the action. Any number or complexity of actions may be
defined to a process.

● Engine is able to simulate computations of guarded command
algorithms regardless of what algorithm is being simulated

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

