
 Implementation Of Lamport’s Scalar Clocks

Surekha Busa

Department of computer science

Kent State University

Kent,Ohio

sbusa@cs.kent.edu

Abstract—A logical clock is a mechanism for capturing

chronological and causal relationships in a distributed system.

The paper discusses about the implementation of logical clocks

by lamport’s. The paper majorly focuses on clock updates and

analyze its dependency on the number of processes and

messages.

I. INTRODUCTION

A distributed system consists of a collection of processes that

communicate by passing messages to each other. So,

each event in a distributed system is either a local step of a

process, a send event, or a receive event. In studying a

distributed system, we often need to assign an order to these

events. Therefore, we use the concept of clocks for

synchronization and ordering of events. Physical clocks

capture the event ordering but suffer from pitfalls like clock

drift so we use logical clocks. This paper deals with the logical

clock implemented by lamport’s.

II. LAMPORT’S SCALAR CLOCKS

Each process Pi has a logical clock Ci assigned with an integer,

the assigned value is the timestamp of this event, denoted as

C(a). The timestamp increases each time an event occurs.

Consider two event a and b , if event a occurs before b i.e.

if a -> b, then C(a) < C(b) this is called the consistency.

Strongly consistency occur when C(a) < C(b) then a -> b .The

major problem with scalar locks is they cannot order

concurrent events i.e. it is partially consistent.

A. Implementation Rule

 Everytime a process send a message, it updates its

clock Ci := Ci + d (d>0) and tag this clock to the

outgoing message.

 Upon receive of message, increments its clock and

compares its clock With the clock in the message

 myclock = MAX(message, myclock).

III. EXPERIMENT

A. Base Algorithm

 Base algorithm: Random Flood

 There are N processes in the network, The number

is taken as an input from the user

 There is one initiator which sends messages to

random nodes.

 Upon receipt of a message, the process randomly

chooses a process and sends a message.

This base algorithm terminates when every process send a

message.

B. Experimental SetUp

The experiment is done considering the clock updates

Whenever, the clock of the receiver takes the value of the

clock of the message we say the clock is updated.

The clock updates depend on 1: The number of messages in

the computation. 2: The number of processes in the system.

Considering this, the experiment was set up varying the

number of processes ranging from 10-100.The clock updates

mailto:sbusa@cs.kent.edu
http://en.wikipedia.org/wiki/Distributed_system

and number of messages was recorded for each 10 runs and

average values are taken. Similar experiment is conducted by

calculating the total updates per process (total updates/no. of

processes) and comparing it by varying the number of

processes

IV. RESULT ANALYSIS AND OBSERVATIONS

A. No. Of Updates and Messages Varying No. Of Processes.

The below graph depicts the total no. of messages and clock

updates generated by varying the number of processes.we

observe a increases in the updates and messages as the no. of

processes increase.

B. No. Of Updates and Messages Per Process Varying

No. Of Processes

The below graph depicts the no. of updates and messages per

process by varying the number of processes. we observe a

increase in the updates and messages as the no. of processes

increase.

C. No. Of Messages Versus No. of Clock Updates

The below graph depicts the no. of updates by varying the

number of messages. we observe a increase in the updates as

the no. of messages increase.

V. CONCLUSION AND FUTURE WORK

From the data results obtained we conclude that the clock

updates increases with the increase in total number of processes

and messages.

For my future work I would like to check the performance of

logical clocks with large no. of processes and also in various

topologies.

ACKNOWLEDGEMENT

I would like to Thank Dr. Nesterenko for his support

throughout the course and my friends for their patience

REFERENCES

[1] Leslie Lamport (1978). ”Time, clocks, and the ordering of events in a

distributed system”. Communications of the ACM 2 (7): 558-565.

[2] Mukesh Singhal,Niranjan G. Shivaratri “Advanced Topics in Operating

Systems”. McGRAW-Hill international edition: Chapter 5.

