

Dijkstra-Scholten and Shavit-Francez Termination

detection Algorithms

Rajesh Yadav Kanakabandi

Department of Computer Science

Kent State University

Kent, Ohio, USA

rkanakab@kent.edu

Abstract— This paper discusses about Dijkstra-Scholten’s

termination detection algorithm for centralized networks and

Shavit-Francez’s generalization to decentralized networks. Also

it discusses the results that are produced when the algorithm is

implemented on various topologies with different number of

processes and different number of initiator processes to measure

the overhead to detect termination (i.e. number of control

messages).

Keywords-process; termination; event; computation;

I. INTRODUCTION

A computation is said to in terminal state when there is no

enabled guarded command and no messages in transit (i.e. no

further steps can be taken by the algorithm). It is important to

detect termination of a computation since, no process will be

aware of the global state of the computation.

Termination detection is done in two phases- Detection and

Announcement. The former is an algorithm to detect the

termination of the computation and the later one is to announce

to all the processes that the computation has come to an end.

However we will not be discussing about the “Announcement”

in this paper. Dijkstra-Scholten’s approach to detect

termination is to detect Message termination and enforce

proper termination on the basis of message termination.

Dijkstra-Scholten’s algorithm detects termination only on

centralized network where only one initiator exists. A

computation tree is maintained for all the processes that are

active and involved in the computation. Each process maintains

additional local parameters “father, children, number of

children”. The initiator is initially made the father of itself.

Here two types of messages are involved: Basic message

“MSG”, Control message “SIG”.

The algorithm goes like:

1. When a process sends a basic “MSG” message to

another process, it makes the receiving process as its

child.

2. When a process receives a basic “MSG” message, if

the process does not have a father and is not involved

in the computation, it makes the sender as its father.

Else if it is already involved in the computation and

has a father. It sends back a “SIG” message.

3. Upon reception of a control message (“SIG”), the

process removes the sender from its children. When

the number of children of the process becomes zero, it

sends a control “SIG” message to its father.

4. The computation terminates when the initiator gets a

signal from all of its children including it-self.

 This algorithm detects termination only on networks with

a single initiator. Shativ-Francez generalized the above

algorithm to work on arbitrary networks with multiple

initiators. Here each initiator maintains its own computation

tree. All such computation trees together are called a forest.

Termination is detected by another single wave that terminates

when all the initiators at a terminal state.

II. EXPERIMENTAL SETUP

To analyze the overhead between message termination and

proper termination, I chose to measure the number of control

messages that have been transmitted over the network. The

whole termination algorithm works on another base algorithm

that broadcasts messages. Here my base algorithm is Random

flood. Where, each process broadcasts at most once. Since

random flood works on arbitrary networks I have a choice of

selecting any kind of network but I chose to work on fully

connected, ring and star topologies. The reason I selected ring

and star topologies is cause of their interesting properties when

mailto:rkanakab@kent.edu

random flood algorithm runs on them. I have varied the

number of processes between 5 and 50 in multiples of 5. For

each case I ran tests for 1 initiator, half of the total number of

processes as initiators, all the processes as initiators.

III. REASULTS AND ANALYSIS

The graphs below depict the number of control messages

that have been sent for different topologies with variable

number of processes and variable number of initiators.

A. Number of basic messages vs number of control

messages:

 The number of control messages and number of basic

messages are comparable(i.e. number of control messages

depend on the number of messages send by the base

algorithm). The number of basic messages sent in star and ring

topology is considerably very low compared to the number of

basic messages sent in fully connected networks.

B. One Initiator on fully connected, ring and star topologies:

With a single initiator in the network, the number of

control messages increases with increase in the number of

processes. For ring and star topologies the number of

messages transmitted could be very less cause of its topology.

(if the initiator chooses to send message to only one neighbor

and the receiver sends only 1 message back to the initiator,

total number of messages will be only 2). The numbers of

basic messages transmitted and number of control messages

are comparable.

C. Half of the processes as initiators:

 With half of the processes as initiators, the number of

messages sent on ring topology and star topology increases

when compared to one initiator. Consider if every alternate

process is an initiator for ring topology and the central process

and n/2-1 other processes are initiators for a network with star

topology.

D. All the processes acting as initiators on fully connected

star and ring topologies:

Even in the case of all initiator processes, the number of

signal messages sent in networks with star and ring topologies

is more than that in case of a single initiator.

IV. CONCLUSION

From the data analyzed, we understand that the number of

signal messages is always comparable with the number of basic

messages. The behavior of the base algorithm caused larger

impact on the number of signal messages which is the overhead

in detecting Proper termination. Star and ring topologies have

interesting topologies that restrict the number of base messages

sent by the base algorithm. And thus restricting the number of

control messages. Number of control messages is comparable

to the number of basic messages.

V. FUTURE WORK

I would like to test the algorithm in other topologies like

tree. I would also like to test the termination detection

algorithm on algorithms other than random flood. In order to

measure a better over head I also want to measure the number

of control messages that are sent after the occurrence of

message termination.

REFERENCES

[1] Edsger W. Dijkstra, C. S. Scholten “Termination Detection for Diffusing

Computations” 1980.

[2] Gerard Tel “Introduction to Distributed Algorithms”, Cambridge
University Press, 1st edition.

[3] Nir Shavit, Nissim Francez “A new approach to detection of locally
indicative stability” 1986.

[4] M. Young, The Technical Writer's Handbook. Mill Valley, CA:
University Science, 1989.

