
Study of Ricart Agrawala Algorithm with modified
Ricart Agrawala Algorithm

Rahul Khadse
Computer Science Department

Kent State University
Kent , Ohio

email: rkhadse@kent.edu

Abstract—Ricart Agrawala's mutual exclusion algorithm[2] is
implemented to conduct experiments to study performance of
Ricart Agrawala and Modified Ricart Agrawala. It was expected
that original Ricart Agrawala would perform at 2*(n-1) when it
comes to message complexity. In modified Ricart Agrawala
Algorithm the system increments the Sequence Number by
Higher Number (instead of 1) for lower priority processes.
Modified Ricart Agrawala was expected to be work same as
original ricart agrawala except the fact that higher numbered
processes get higher priority for critical section access. Analysis
of original and modified algorithm is done using simulation
under different number of processes(N) and different contention
load sizes (L). Original Ricart Agrawala performs as expected
but Modified Ricart Agrawala works exactly same as Ricart
Agrawala. The simulation allows analysis of the data in message
exchanges required to enter critical section per node and
behaviour of algorithm under different conditions.

I. INTRODUCTION
 Implementation of Distributed mutual exclusion(DMX) are of
two types : Non Token based and Token based. In token based
DMX algorithm mutual exclusion is by using tokens while non
token based DMX algorithm uses locks. In Lamport's[1] DMX
Algorithm process requesting mutual exclusion sends messages
to all processes and waits for reply if it is allowed to enter
critical section. Once critical section access is done , it will
notify all processes by releasing the request. The Lamport
Algorithm uses messages : REQUEST, REPLY, AND
RELEASE per critical section. Since three messages are
required per critical section, the number of messages required
is 3*(N-1).

 Ricart Agrawala algorithm[2] is optimization of Lamport's
Algorithm that dispenses with RELEASE messages by cleverly
merging them with REPLY messages.Since a request is only
allowed to enter critical section when process when a process
recieves all REPLY messages from all processes, a REPLY can
be delayed to a node only when a node is done with it's critical
section. Hence number of messages required to enter critical
section are reduced from 3*(N-1) to 2*(N-1).

This report is presented as follows : In section II, we presented
the experiment parameters used , the assumptions for realistic

simulation engine. In section III we present our findings of
running the simulation for various parameters and our analysis
of the results .

Finally in section IV , we summarized our findings
and presented our future research interest in this area.

II. EXPERIMENTATION SETUP

 The objective of this experiment was to implement Ricart
Agrawala algorithm and Modified Ricart Agrawala for
purpose of understanding the behaviour of the algorithm under
different number of nodes(N) and different load (L). The
program implemented was run several times, with different
experiment parameters to collect statistical data. This data is
used to plot results and analyse the behavior of the algorithms.

A. Experiment Parameters and Expectation

1) Original Ricart Agrawala :

The parameters used in Ricart Agrawala simulation started by
varying the size of the system , number of nodes (N) and
varying load size (L). The number of nodes used varied from
10 to 100. In each increment of 10 nodes , I then varied the
size of the contending nodes, load size (L) with low load
1(node) and high load (all nodes). It is expected, that in Ricart
Agrawala, the change in Load Size will not affect the number
of messages being exchanged between nodes. In fact , I expect
it to have a constant number of messages exchanged despite
change in load. However change in number of nodes should
reflect linear change in number of messages per critical
section access.

2) Modified Ricart Agrawala
The parameters used in Modified Ricart Agrawala simulation
started by varying the size of the system , number of nodes
(N) , varying sequence number increment for lower priority
processes. In each case I varied the size of system by varying
number of nodes(N), and sequence number increment , and
observed number of Critical Section accesses made by High

priority and low priority processes when total number of
Critical section accesses are same. Each process given a fair
chance to execute the critical section . I expected to have same
number of critical section accesses for both high priority and
low priority processes irrespective of change in sequence
number increment. Because when any process sends message
with sequence number to any process , it updates its sequence
number if received sequence number is greater than its
sequence number. So even if high priority process's sequence
number is greater than that of low priority process's sequence
number, the high priority processes will eventually update its
highest sequence number after receival of request . Ultimately
total number of critical section accesses are going to be same.
Only order of exceution by processes will change.

B. Simulation Engine
1) Original Ricart Agrawala
The simulator implemented is responsible to handle creation
of nodes , selection of nodes by random to be run , and
assigning channels to the nodes. I used random number
generator to generate a random process to be run . In this way
simulations were random such that no two runs have the same
computations.

To ensure that the simulation executed as according to the
specifications of the algorithm, receive request function should
be implemented such that when process i recives a request
from process j , it sends a REPLY message to process i, if
process j is neither requesting nor executing the CS or if
process j is requesting and then process j's own request
timestamp. This implementation is done using function
rec_request as following figure(1):

Figure (1)

2) Modified Ricart Agrawala

Original Ricart Agrawala Algorithm tends to favor lower
numbered nodes slightly using to tie breaking rule. This
favouritism can be reduced by incrementing the sequence
number by higher number for modified Ricart Agrawala . To
implement this I used the algorithm given in figure 2. The
sequence number for lower numbered process should be
incremented by higher number and vice versa .

Figure (2)

III. RESULTS

A. Original Ricart Agrawala

The results of the experiment for Ricart Agrawala Algorithm
for varying number of nodes N and varying load size is shown
in figure (3). It can be seen from the table that for any given
fixed number of nodes N , varying the Load size doesnot
change the number of messages being exchanged in the
system.

Figure(3)

Figure(4)

Figure(4) shows a graph of number of processes versus
number of messages per CS accesses under high load and low
load . The graph shows that message complexity doesnot
change in case of high load and low load. It remains same.
Message Complexity changes linearly with number of
processes in the system. This linear change is exactly 2*(N-1)
where N is number of nodes. This results are as expected
because each node requires to send exactly N number of
nodes twice for request and reply . Hence the graph shows a
linear growth with increase in number of processes regardless
of load size.

B. Modified Ricart Agrawala

The algorithm tends to favor lower numbered nodes slightly
owing to the tie breaking rule[2]. This favoritism can be
reduced incrementing the sequence number of low priority
process by larger integer.

Fig(5) shows table which contains total number of processes.
Increments used for higher numbered processes, number of CS
accesses made by high priority(lower numbered processes)
and lower priority(higher numbered processes when total
number of CS accesses are 200. I calculated difference
between number of CS accesses made by high priority and
lower priority processes. This difference happens to be zero.
Fig (6) shows analysis done using same concepts on ten
number of processes. Irrespective of number of increments
;number of CS accesses made by each process was same when
total number of CS accesses was 200.

Fig(5)

Fig(6)

IV. CONCLUSION

From the data analysed the results we can conclude that
message complexity of Ricart Agrawala is not depend on high
load or low load but depends on the number of processes in the
system. Thus Ricart Agrawala gives constant performance even
in case of high load.

In modified Ricart Agrawala the message complexity of the
system will not be affected. Irrespective of sequence number
increment by higher number for low numbered (Higher Priority
Process) , the number of CS accesses made by high priority and
low priority processes are same.

Ricart Agrawala can be extended to work on practical
network applications. In practical network insertion of new
nodes to the network working on mutual exclusion should not
affect the correctness of algorithm. The newly added nodes
should be able to update their sequence number , request
received , and should be able to determine replies to deployed.

Ricart Agrawala can be extended to solve Dining
Philosopher's Problem where there are several sites and several
number of processes working in each site.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.
[2] G. Ricart and A. K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Commun. ACM, vol. 24, no. 1, pp.9–17,
1981.
[3] http://deneb.cs.kent.edu/~mikhail/classes/aos/

	I. Introduction
	II. Experimentation setup
	A. Experiment Parameters and Expectation
	1) Original Ricart Agrawala :
	2) Modified Ricart Agrawala

	B. Simulation Engine
	1) Original Ricart Agrawala
	2) Modified Ricart Agrawala

	III. Results
	A. Original Ricart Agrawala
	B. Modified Ricart Agrawala

	IV. Conclusion

