

Study and Analysis of Chandy Misra Haas
Distributed deadlock Detection

Purva Gawde
Department of Computer Science

Kent state University
pgawde@kent.edu

mailto:pgawde@kent.edu�

Abstract—in this paper, we are going to study
Chandy Misra Haas distributed deadlock detection.
The paper is based on the practical implementation
of the algorithm and the comparison made based on
the experimental results. These algorithms have
been implemented on C++ format. The message
complexity and time complexity have been used to
measure the performance of the algorithm. In
section II of the paper we are going to study the
analysis of the algorithm when only one initiator is
present. In section III of the paper we are going to
study the analysis of the algorithm when each
process acts as an initiator. Section 4 talks about the
conclusion of this experiment in brief. To conclude
the paper we present the result of the comparison
and suggest some improvements.

I. INTRODUCTION

In the introduction we will talk about the basic
concepts of the algorithm which will enable better
understanding of algorithm and implementation.

 Communication Model: Network of processes
which communicate via messages. Controllers are
implemented by processes and requests for resource
allocation and cancellation and release must be
implemented by processes.

A process can be either idle or active. Processes can
wait for more than one process for resource
allocation and process becomes active if it receives
a message from any one of the process it’s waiting
for.

Properties of a query computation:

If a process is deadlocked when it initiates a query
computation, it will receive a reply.

Several processes may initiate a query computation
and same process may initiate a query computation
several times.

Properties for processes:
Every process maintains four local variables:
Latest: largest sequence number in any query
Engager: it is the identity of the process which
caused latest to be set to its current value.
Num: total number of query minus reply messages
When value of num for the initiator becomes zero
then the deadlock is detected.
Wait: is true only when the process is idle.

 Initial value of latest for each of the process is set
to be zero and initial value for wait for all processes
is false.

Various data points are inserted in Implementation
to calculate the number of messages.

II. SINGLE INITIATOR
Analysis of the Chandy Misra Distributed deadlock
detection when only single process in the
deadlocked processes initiates the query:
The data for measuring the message and time
complexity for the algorithm is gathered over 10
runs of the implementation.

 Graph 2.1
 Processes vs. messages

Message complexity:
The graph represents the number of processes vs.
number of messages. Number of messages is
counted till the deadlock which is initiated by a
single process has been detected.
The graph shows as the number of processes
increase the number of messages exchanged to
detect a deadlock is increasing linearly. This
happens because the same number of messages is
exchanged each time query is initiated.

 Graph 2.2
 Processes vs. time

Time complexity:
The graph represents the Time taken to detect the
deadlock when single initiator initializes a query.
Time taken is calculated in terms of number of steps
taken to detect a deadlock.
The graph shows that as the number of processes
increase, time taken to detect a deadlock is
increasing linearly. This happens because equal
number of steps is taken each time a process
initiates the query.

III. ALL INITIATORS
All the processes involved in the deadlock initiate
the query. Processes are waiting for the next process
for resources in a circular manner. Each one of
these processes initiates the query. A process can
initiate the query if deadlock for the previous
process is already detected.
These are the assumptions made while calculating
the message and time complexity.

 Graph3.1
 Processes vs. messages

Message complexity:
This graph represents the number of messages
exchanged till the deadlock is detected when each
one of these processes initiate the query. We can see
from the graph that number of messages exchanged
increase significantly as number of processes
increase. This happens because same set of
messages are repeated for each of these processes
when it initiates the deadlock by sending a query
message.

Time complexity:
The graph represents the time required to detect the
deadlock vs. the number of messages. Here all the
processes act as an initiator. Hence time required to
detect the deadlock for each one of these processes
is measured in terms of number of steps. It is
evident from the graph that time taken to detect all
the deadlocks increases significantly as the number
of messages. Same number of steps is repeating for
each of the process initiating the deadlock.

 Graph 3.4
 Processes vs. time

IV.

As seen in the performance graph of the algorithm
CONCLUSION

For both the scenarios it can be concluded that:
As the number of processes increase the number of
messages increase to detect a deadlock.
But if the number of initiators increases, the number
of messages exchanged and time taken to detect the
deadlock of the algorithm increase significantly.

References:

1.Distributed Deadlock Detection-
K Mani Chandy and Jaydev
Mishra.
2.CHANDY, K.M., AND MISRA,
J. A distributed algorithm for
detecting resource deadlocks in
distributed systems. In Proc. A
CM SIGA CT-SIGOPS Syrup.
Principles of Distributed
Computing (Ottawa, Canada,
August 18-20, 1982), ACM, New
York, 1982, pp. 157-164.
3.
J. A distributed algorithm for

 CHANDY, K.M., AND MISRA,

detecting resource deadlocks in
distributed systems. In Proc A
CM SIGA CT- SIGOPS Syrup.
Principles of Distributed
Computing (Ottawa, Canada,
August 18-20, 1982), ACM, New
York, 1982, pp. 157-164

	I. Introduction
	II. Single initiator
	III. All initiators

