Simulating Corona Linearization
Patrick O’Donnell
Department of Computer Science
Kent State University
Kent, OH 44242
podonne3@kent.edu
Abstract—Corona is a deterministic self-stabilizing algorithm for skip list construction in structured overlay networks [1]. The Corona Linearization algorithm forms a doubly linked list from a weakly connected set of processes. I present a simulator for running and testing the Corona Linearization algorithm on any weakly connected set of processes. I will use this simulator to compare the linearization algorithm between ring and star topologies, measuring both messages sent and commands executed.
I. Introduction
In the linearization problem in Corona, each process has two outgoing links: R and L. For a process, p, the right identifier, R, is a link to some process with an id greater than p, and L is a link to some process with an id less than p. If there are no processes with an id greater than p, or less than it, the link is said to point to positive or negative infinity respectively. The value of the link may also be undefined, in which case it is equal to positive or negative infinity.
Each process also contains two commands: timeout() and receive(message). The timeout command is always enabled. When a process executes the timeout command, it sends its own identifier to both R and L. The receive command is only enabled when there is a message in the incoming channel. When a process executes the receive command, it compares the identifier in the incoming message to its own id. If the incoming id is greater than the process’s id, then the process compares the incoming id to R. If the incoming id is less than R, then the new id is from a process that is closer than R, so the process updates R to the closer process and sends the previous value of R to the new R. Similarly, if the incoming id is less than the process’s id, but it is compared to L [1].
II. The Simulator
A. The Simulator Class
The simulator is encapsulated in a Simulator class. Once the simulator is populated with executable processes and the data for their variables (through the add(Executable) method) it can be started by simply calling the start() method.
Once stated, the simulator will randomly choose one process. If that process has any enabled commands it will randomly choose one of them to run, otherwise it will move on to the next process in its vector of stored processes. After a single guarded command is executed, the simulator will update all of its stored variables that have been changed by that command, it will check to see if the Corona Linearization has completed, and then, if the linearization is not done, the simulator will pick a new, random starting position, and start checking for enabled commands again. Because of this, the simulator can simulate the execution of any program written with guarded commands.
B. The Executable Class
Packaged in the header file for the simulator is an abstract class: Executable. All classes that wish to run on the simulator must inherit from Executable. Mainly, the Executable class provides a uniform interface for the simulator to access the information of each process. An Executable object contains a process state, which contains a process id, a channel, and vectors for all member variables. The Executable class has only one virtual function, execute(), which returns true if a command executed and false if no commands executed. It is up to each process to decide which guarded command to execute when there are multiple commands enabled.

C. The Process Class
Along with the simulator is a Process class, which runs on the simulator as a single process of the Corona Linearization. Each process has the guarded commands and variables specified in the Corona linearization problem. The process.h and process.cpp files are not part of the simulator.

D. The Topologies
The ring and star topologies are specified in the ring.cpp and star.cpp files. Each file initializes processes and sets their R and L variables such that the processes form the specified topology. It then packs them all into a simulator and starts it. Use these files as templates for testing new topologies.
III. Experimental Setup
The Corona Linearization was run on a ring and star topology. The star topology was tested at 5, 10, 15, 20, and 30 processes. Each data point was tested 20 times, except for the last, which, due to the amount of time it takes to run, was only tested five times. The ring topology was tested at 5, 10, 15, 20, and 25 processes. Each data point for the ring was tested 20 times.
For every test, the total number of commands executed was measured. The number of messages remaining in all the channels at the end of the computation and the highest number of messages in the channel at any given time were also measured. All other parameters, such as the ratio of timeout to receive commands, were constant.

IV. [image: image1.png]Commands

Executed

800,000

700,000

600,000

500,000

400,000

300,000

200,000

100,000

Star Topology

10

15
Nodes

20

30

= Average

= Min

= Max

Predictions
A. The number of commands executed will increase exponentially faster than the number of messages
[image: image2.png]Commands
Executed

Ring Topology

300

200
= Average
= Min
= Max

100

0 T i i
5 10 15 20 25

Nodes

Almost every time a command is executed, the linearization algorithm will send either one or two messages out. The only exceptions are if a process’s L or R points to positive or negative infinity, or if a process receives the id of its current L or R. These extra messages, which usually have already been sent at least once, act as a buffer preventing other messages from reaching their destination, since the channels are FIFO. This will allow even more time for other commands to execute, which will put even more messages in the channel, and further increase the gap between the number of commands executed and the number of messages.
B. The star topology will execute with less commands
For any given process in a star topology, it will only take two hops for that processes identifier to reach its closest neighbor. That is to say, the network diameter is much smaller for a star topology than it is for a ring topology, therefore the messages will not have to travel as far to reach their destination.
V. Results

A. The ring topology executed much faster than the star

The initial prediction that the star topology would be faster was proved wrong. This is because the prediction did not take into account the fact that the topology changes, so the distance between processes, which initially is only two hops, quickly increases. In fact, Fig. 1 seems to indicate that the execution is exponential as the number of processes increases.

The ring topology starts out almost completely linearized. The last process, which points back to the front, is the only process which is not linearized. Therefore, the best case for the ring is N steps, where N is the number of processes. That’s why the ring takes much less steps to linearize. As Fig. 2 indicates, the ring topology has a linear lower bound, as well as a linear upper bound, albeit with a larger constant.
Figure 1. Commands executed for the star topology

Figure 2. Commands executed for the ring topology

B. Messages are sent too often

As you can see from Fig. 3 and Fig. 4, the number of messages remaining in the channels was pretty close to the largest number of messages ever in the channels. This is because messages stay in the channels for a very long time, since they are forwarded continuously until they reach a process which already contains the id in the message. Since a message is already in the channels, we shouldn’t send it again, but because the timeout command is always enabled, we do.
Figure 3. Messages sent for the star topology (lines are overlapping)
VI. [image: image3.png]Messages

180,000

160,000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

Star Topology

10

15

Nodes

20

30

— Most at one
instant

= Remaining
atthe end

[image: image4.png]70

60

50

Messages
PR
g8 3

N
8

10

Ring Topology

10

15

Nodes

20

30

— Mostat any
one instant

= Remaining
atthe end

Future Research

A. Test the star topology with more processes

Fig. 1 seems to indicate that the star topology runs in exponential time, but the data is too limited to be sure. Future research should use more powerful computers to test larger numbers of processes to verify this. Statistical analysis could also be done to figure out if the running time is quadratic, cubic, quartic, etc.

B. Test more topologies

It would be interesting to see if the results shown in Fig. 3 and Fig. 4 remain constant over different topologies. It would also be nice to see how different topologies stack up compared to the ring and the star. Knowing which topology is best for Corona could impact an organization’s choice of using Corona or their choice of network topology.
References

[1] R. Mohd Nor, M. Nesterenko, C. Scheideler "Corona: A Stabilizing Deterministic Message-Passing Skip List"

Figure 4. Messages sent for the ring topology
