
Study and Analysis of Ho-Ramamoorthy 2-Phase 

Deadlock Detection Algorithm 
Nitish Chaparala

  

 Kent State University, Department of Computer Science, Kent, Ohio-44242 
 
nchapara@kent.edu 

 

 Project Report for Advanced Operating Systems 

 
Abstract—   This paper describes the detailed study of the Ho-

Ramamoorthy 2-Phase deadlock detection algorithm. The paper 

is based on the practical implementation of the algorithm and 

results are drawn from the experiment results. These algorithms 

are implemented on C++ platform. The message complexity and 

time complexity are used to measure the performance of the 

algorithm. 

I. INTRODUCTION 

Ho-Ramamoorthy 2-phase algorithm detects deadlocks 

when it comes across a cycle in the wait-for-graphs. Cycles 

are checked for twice before it declares a deadlock.  

Snapshots are used to implement this algorithm, to track the 

working. Snapshot of an algorithm returns the state of the 

system and message queue. It basically returns a status 

message giving details about the current state of individual 

nodes in the system graph. 

Snapshot algorithm runs on a modification of the random 

flood algorithm to suit the needs of our desired deadlock 

detection algorithm. The random flood algorithm is modified 

such that a potential cycle is formed in a virtual tree to detect 

deadlocks. If the initiating node broadcasts the messages, and 

at some point receives a message back from the child node, a 

cycle is formed.  

Various data points are inserted in the implementation of 

the algorithms to keep track on the number of messages and 

the time taken till that particular execution point. This data is 

collected over several runs and performance comparisons are 

presented based on the readings. 

 

II. EXPERIMENTAL SETUP 

The experiment was conducted by modifying the random 

flood algorithm. Deadlocks scenario is obtained while 

processes send messages to each other. The initiating process 

becomes the father node, and upon receiving a message from 

the children nodes, a cycle is formed. This is considered to be 

the graph, and the cycle indicates a deadlock.  

To measure the message complexity, forty processes were 

considered, and 10 runs per data point were considered, and 

the average number of these messages was considered.  

To measure the time complexity, forty processes were 

considered, and the time taken to execute the algorithm 

(deadlock detection) was noted for 10 runs per data point. 

 

III. ANALYSIS OF THE ALGORITHM 

The analysis of the implemented algorithm started with the 

measurement of the number of messages (sent and received 

until the detection of a deadlock), to the number of processes. 

 

 

Following is the table for the data used. 

 

Message Complexity 

Processes Messages 

5 15 

10 25 

15 50 

20 79 

25 91 

30 106 

35 119 

40 147 

Table 2.1  

 

 

 

 
Graph. 2.1 Messages vs. Processes 

  



 Graph 2.1 shows the time complexity of Ho-

Ramammorthy’s algorithm. Graph depicts a normal 

behavior. It shows gradual increase in number of messages 

as the number of processes increase.  

 

For the second analysis, time (in ms) for the 

execution of algorithm is measured with the help of a 

physical clock. It is considered for the number of processes. 

 

Time Complexity 

Processes Time 

5 10 

10 21 

15 39 

20 58 

25 67 

30 76 

35 83 

40 95 

Table 2.2 

 
Graph 2.2 Time vs. Processes 

 

Graph 2.2 shows the increase in the time taken by the 

algorithm to execute as the number of processes increase. It 

shows normal behaviour up to 20 processes, where there is a 

constant increase until 30 processes. Then, there is an increase 

again. It is necessarily due to changes in the physical clock of 

the CPU. 

 

IV. IMPLEMENTATION DETAILS 

The algorithm is implemented on the C++ platform. It 

essentially contains a queue module for the messages to be 

broadcasted and a modified random flood method which 

creates the necessary graphs to check for the deadlock. It is 

also responsible for taking the snapshots for the display of 

results. 

 

 

 FUTURE WORK AND CONCLUSIONS 

As part of the future work, firstly, the algorithms have to be 

tested on large distributed systems. The performance of the 

algorithm needs to be tested on various topologies as well. 

Ensuring that the algorithm is implemented in a more scalable 

manner should be the priority. Lastly, the algorithm 

implementation can be improved to reduce/remove the false 

deadlock detection possibility. 

 

In conclusion, the Ho-Ramamoorthy 2-Phase deadlock 

detection algorithm was implemented with certain problems 

with the modularity of the code. It was observed that increase 

in the number of processes increases the time taken to detect 

the deadlock increases. Also, the number of messages before 

detecting the deadlock increases with an increase in the 

number of processes. 

 

ACKNOWLEDGMENT 

I would like to thank Dr. Mikhail Nesterenko, our professor 

for the course in guiding us throughout the project 

implementation and giving us an opportunity to showcase our 

skills. 

 

REFERENCES 

[1] G.S. Ho, C.V. Ramamorthy "Protocols for deadlock detection in 
distributed database systems", IEEE Transactions on Software 

Engineering, 8(6), pp 554-557. Sep. 1982" 

[2] Singhal, Mukesh. And Shivaratri, Niranjan [ISBN: 0-07-057572-X] 
“Advanced Concepts in Operating Systems”. McGraw-Hill 

Publications, 1994, p. 156-158. 

 


