
ANALYSIS OF RAYMOND TREE TOKEN
BASED

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHM

Lakshmi Nannapaneni
Computer Science Department

Kent State University, Ohio

e-mail: lnannapa@kent.edu

Abstract—Raymond Tree Algorithm is a token based

Distributed Mutual exclusion Algorithm in which a

process (a node) in a distributed system can enter the

critical section only if it is in the possession of a token. The

token is obtained by a node using message passing

mechanism. The experiment results shows that the

Raymond’s Tree Algorithm requires O (Log N) message

under low load and reduced number of messages

exchanged per critical section to approximately 4 messages

under high load. In this experiment Raymond Tree

algorithm is applied on Star, Chain and an arbitrary Tree

topology

Keywords--- Critical Section, PRIVILEGE, REQUEST,

Star, Chain, Tree

I. INTRODUCTION

Raymond Tree Algorithm uses a spanning tree to reduce the

number of messages exchanged per critical section execution.

The network is viewed as a graph; a spanning tree of a

network is a tree that contains all the N nodes. The algorithm

assumes that the underlying network guarantees message

delivery. All nodes of the network are ’completely reliable.

Sites are logically arranged as a directed tree. Edges of the tree

are assigned directions toward the token holder (root of the

tree) Root of the tree is the node with the token. Messages

between nodes traverse along the directed edges of the tree. A

node needs to hold information about and communicate only

to its immediate-neighboring nodes. Similar to the concept of

tokens used in token-based algorithms, this algorithm uses a

concept of privilege. Only one node can be in possession of

the privilege (called the privileged node) at any time, except

when the privilege is in transit from one node to another in the

form of a PRIVILEGE message. When there are no nodes

requesting for the privilege, it remains in possession of the

node that last used it. Each node maintains a HOLDER

variable that provides information about the placement of the

privilege in relation to the node itself. A node stores in its

HOLDER variable the identity of a node that it thinks has the

privilege or leads to the node having the privilege. Each node

maintains a request Queue. Each node requesting for entry

into the critical section sends REQUEST message to its

HOLDER and the HOLDER in turn forwards the REQUEST

to its HOLDER and this continues until the REQUEST

reaches the actual holder of the token. The token holder sends

the PRIVILEGE message to the requesting node at the head of

the queue. On receiving the PRIVILEGE if the nodes own id

is top of the queue, it executes critical section else sends the

PRIVILEGE to the node pointed by the id, and set its holder to

point to that node and if there are any requesting nodes in its

queue sends the REQUEST message behind the PRIVILEGE

message. The number of messages required to execute critical

section can be 0 or typically 2D, where D is the diameter of

the tree on which the algorithm is running. At high load,

approximately 4 messages are required for each node to gain

entry into the critical section. At low loads, number of

messages required depends on the topology of the network.

For each REQUEST message, there will be a corresponding

PRIVILEGE message. Hence the number of PRIVILEGE

messages will be equal to number of REQUEST messages.

II. EXPERIMENTAL SETUP

Experimental setup in the process of Analysis, data was

collected by executing the algorithm for 10 times and taking

the average of total number of messages which were sent for

each critical section execution. Messages considered were of

two categories - REQUEST and PRIVILEGE. Results were

taken by varying critical section execution for 1load, half load,

and full load on different number of nodes from 10 to 100 in

the increments of 10 by fixing the topologies Star, Tree,

Chain.

mailto:lnannapa@kent.edu

III. RESULTS FOR RAYMOND TREE AGORITHM

A. Raymond Tree Algorithm for Star Topology

Raymond Tree- Number of Messages per CS entry in Star

topology

The above graph indicates that at full load, the algorithm

requires exchange of only four messages per CS execution.

B. Raymond Tree Algorithm for Tree Topology

The Experiment was conducted on an arbitrary topology with

random number of depths and random number of children for

each node is considered.

Raymond Tree- Number of Messages per CS entry in Tree

topology

The above graph, at full load, the algorithm requires exchange

of only four messages per CS execution. For 1load and half

load, more number of messages is required when compared to

star topology. Because there would be many depths in a tree

topology as compared to only 2 in star topology. Hence, more

the number of depths, at low loads higher number of messages

are required.

C. Raymond Tree Algorithm for Chain Topology

Raymond Tree- Number of Messages per CS entry in Chain

topology

The above graph indicates that at full load, the algorithm

requires exchange of only four messages per CS execution.

But at the 1load and half load the number of messages

required is more when we compared with the tree and star

topology. Because in chain topology the nodes are arranged in

a straight line as a chain. If suppose the requesting node is at

one end of chain and the token holder is at the other end, then

there will be N-1 REQUEST and N-1 PRIVILEGE messages

for one critical section entry. Hence maximum number of

messages per critical section entry can be 2(N-1) messages. So

more number of messages are required if the request has to

travel from one end to the other.

IV. CONCLUSION

An experiment was done on Raymond Tree Algorithm by

varying parameters for fixed topologies. The result obtained

signifies us that the worst case occurs at low loads and in

chain topology which increases the diameter of the network

used. Under heavy load, the algorithm exhibits an interesting

property: “As the number of nodes requesting for the privilege

increases, the number of messages exchanged per critical

section entry decreases.”

V. FUTURE WORK

Future work includes testing the performance of the algorithm

on chain of large number of nodes in thousands range to get

the accurate result. The implementation can be enhanced to

make Raymond Tree work for completely connected graphs in

which a spanning tree can be formed and algorithm can be

applied on that.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. Mikhail

Nesterenko. In this course of Advanced Operating System, Dr.

Mikhail Nesterenko has offered me lots of help and hint to me

to carry the tasks to accomplish the project works.

REFERENCES

[1]Raymond, Kerry "A Tree-Based Algorithm for Distributed Mutual

Exclusion", ADM Transactions on Computer system, Vol. 7, No.1, February

1989, Pages 61-77.

[2]R. Satyanarayanan and D. R. Muthukrishnan. A Note on Raymond’s Tree

Based Algorithm for Distributed Mutual Exclusion. Information Processing

Letters, 43(5):249–255, 1992.

