2

(
Maekawa: Quorum Size Research

Jeremy Miller
Abstract— Maekawa’s DMX algorithm uses quorum sets for permission based critical section access. The billiards algorithm was the given quorum creation method and to test if it is optimal it was tested against another algorithm with a bigger quorum size. Both quorum sizes were tested in similar conditions with varying critical section entry amounts. From the results it was found that the billiards algorithm is better because both algorithms had 100% correct critical section entry order and billiards had fewer messages per critical section entry. In conclusion, when using Maekawa’s algorithm, there’s no reason to use anything other than the billiards algorithm.

I. INTRODUCTION
In distributed mutual exclusion solutions there are many different ways to deal with the problem. There are token based solutions, and there are permission based solutions. Maekawa’s algorithm is a permission based algorithm and has the lowest message complexity of all of the permission based algorithms, 6√N. The 6 comes from that there are 6 different types of messages to send. Request, permission, release, failed, inquire, and yield. The first 3 alone are adequate for a process to access a critical section, but the last 3 are necessary to prevent deadlocks within the algorithm. The reason why the message complexity is √N is because unlike most permission based distributed mutual exclusion algorithms, a process must only contact a pre-determined set of processes to gain access to the critical section.
Maekawa’s algorithm has a few rules that need to be followed. Each process has a quorum, or a set of processes that it must communicate with for access to the critical section, each process only has one permission to give, and a process is granted access to the critical section only if it receieves a permission from its entire quorum.

One of the ways that maekawa can variate is the quorum creation. Quorum creation is limited to a few rules, but other than that they can be made in any way. Quorums must intersect all of the processes, and to ensure fairness the quourums for each process should have the same number of processes, and each process should belong to the same number of quorums. Also, all quorums must be unique. For message complexity, the smallest quorum size is best, but this might not ensure correct critical section entry order.

The first algorithm for creating quorums is called the billiards algorithm. It’s named for the paths of the lines to create the quorums which resemble a billiard ball path.The billiards algorithm has the smallest quorum size of the two algorithms tested, at √2√N. The second algorithm, grid scheme, uses vertical and horizontal lines to create the quorums and because of this has a larger quorum size, 2√N.
In this research , the billiards aglorithm and the grid scheme quorum creation algorithms were tested for message complexity and correct critical section entry order. The hypothesis is that the billiards aglorithm will have lower message complexity due to its lower quorum size, but it will have a higher chance of incorrect critical section entry order.
[image: image1.png]

Fig. 1. Billiards quorum creation (a) and grid scheme quorum creation (b).

II. Experimental Setup
Because of the nature of the two quorum creation algorithms, it wasn’t possible to create two sets of quorums of a managable size that had the exact same amount of processes. For the billiards algorithm, the test size was 24 processes with a quorum size of 7. For the grid scheme algorithm, the test size was 25 processes with a quorum size of 9.

The tests run on the two algorithms were based on message complexity and critical section entry order. Message complexity was found by counting every message sent and dividing by the number of critical section entries. Correct critical section entry order was found by keeping track of the order of requests for the critical section, then also keeping track of the order of entries, then comparing the two. The tests were run 10 times each on critical section entry sizes of 1, 2, 5, 10, 20, 50, 100, 500, and 1000.
III. Results
As predicted, when using the billiards algorithm, average messages sent per critical section entry was lower across the board. With a small amount of critical section entries, the difference is much greater than when the critical section entries increases to 50 or more. After that point both algorithms only differ by 8 messages per critical section entry. The reason for this is because due to message propogation there is a good chance that for those first few critical section entries each process will send out requests, and most of those will fail, triggering failed, inquire, and yield messages. Once the algorithms have stabilized and each process has a full queue, inquire and yield won’t be used because an incorrect permission is unlikely to be given out. The reason for the difference in messages sent by 8 can be explained by the quorum size difference of 2. For every critical section request past stabilization, there will be 2 extra request messages, 2 extra failed messages (because there will always be a request in the queue with a lower timestamp), 2 extra permission messages, and 2 extra release messages. The difference in average messages sent past stabilization can be found by multiplying 4 by the difference in quorum sizes.
It was found that neither algorithm ever had a critical section entry that was in incorrect order. Both algorithms had 100% correct entry order for all 180 tests run. It was expected that there would be a few incorrect entries, but that wasn’t the case.

[image: image2.png]Avg Messages Sent

Billiards vs. Grid Scheme Msgs Sent

0 200 400 600 800 1000 1200

Critical Section Entries

—o—Billiards
—8—Grid Scheme

Fig. 2. Billiards vs. Grid Scheme: Average messages sent per critical section entry.
[image: image3.png]Avg Messages Sent

Billiards vs. Grid Scheme Msgs Sent

= |

10 20 30 40 50 60

Critical Section Entries

—o—Billiards
—8—Grid Scheme

Fig. 3. Billiards vs. Grid Scheme: Average messages sent per critical section entry excluding critical section entry amounts over 50.
IV. Future Work and Conclusions
In the future, further tests could be done in which the quorum sizes vary to see if there are any differences. Also, to try and get better results with the correct critical section entry order, it could be attempted with a forced out-of-order situation initially to see if there is still a 100% success rate. Contention rate could also be modified to see if at a lower contention rate the success rate still stays at 100%.
Because of the billiards algorithm having both a lower message complexity and 100% correct critical section entry order, it’s determined that the billiards algorithm is the optimal algorithm for quorum creation. There is no advantage to using the grid scheme over the billiards algorithm.

References

[1] Agrawal, D, “Billiard Quorums on the Grid." in Information Processing Letters, vol. 64, issue 1. 1997, pp. 9–16.

Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).

