

Causal Ordering Of Single
Messages

Presentation By: Christian Newman

Original algorithm creators:
André Schiper, Jorge Eggli, Alain Sandoz

Algorithm Summary

● Store vector of last sent messages at each
process and attach said vector to each
message sent. When message is received,
check vector to make sure that there are no
messages still propagating that causally
precede the current message.

● Update your own clock and vector of last-sent
messages after making certain that the current
message was received in order.

Setup

● Want to measure when the number of
messages required to resolve message
ordering conflicts converges to 1 message in
two schemes:

● Randomly received messages (average case)
● Messages received in backwards order. (worst

case)

Results – Reverse-order receive

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Processes

P
o

in
t o

f C
o

n
ve

rg
e

n
ce

Results – Reverse-order Receive

● Range of convergence: 4.5 – 3.5 for 0 – 100 processes
so, even in worst case, we get performance close average
case (as we will see next)

● Slow tendency towards converging faster as number of
processes increase.

● This is because, with higher number of processes, more
messages are in the queue on average. When the
message we were waiting for is finally received, many
many messages are unbuffered.

● With higher number of processes, this happens to a
greater magnitude.

Results – Random-order Receive

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Processes

P
o

in
t o

f C
o

n
ve

rg
e

n
ce

Results – Random-order Receive

● Range of Convergence: 3.5 – 2.9 but there is
no conclusive dependence on number of
processes.

● With Random-order the number of buffered
messages pulled out as a consequence of
causal relationship is lower than with Reverse-
order.

Future Work

● Run tests with more processes, use more
robust statistical metrics to help control the
factor of randomness innate in the algorithm.

● Use an actual cluster to run tests.
● If building a simulation, use techniques to lower

message size in order to run larger tests.

Code Defense

● Debugging: There're a lot of places for
messages and the structures that help keep
them in causal order to get jumbled.

● Solution: The output that the program used in
the project 2 submission was created for the
express purpose of debugging. Assert
statements and catches for strange behavior
made certain that assumptions were upheld.

Code Defense 2:

Code

http://www.cs.kent.edu/~cnewman/Ex.pdf

End

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

