
Convergence of Causal Message Ordering within the
Schiper-Eggli-Sandoz Algorithm

Christian D. Newman
Department of Computer Science

Kent State University
Kent, Ohio, USA

cnewman@kent.edu

Abstract— The convergence of the Schiper-Eggli-Sandoz Causal
ordering of messages is measured in order to verify the scalability of
the algorithm under increased number of processes and unfavorable
message load.

Keywords-Causal Message Ordering; Distributed Algorithms.

I. INTRODUCTION
The Schiper-Eggli-Sandoz algorithm deals with causal
message ordering in a system that has multiple, asynchronous
processes. In order to guarantee causal message receipt, it
takes advantage of piggy-backing information on messages
and keeping information at each process about the other
processes. If a message cannot be delivered due to being
causally preceded, it's buffered; messages that are buffered
remain buffered until the messages that causally precede it are
received. The amount of time these messages remain buffered
for increased number of processors will give us an idea of how
well the algorithm scales.

II. BASE WORK

The base algorithm used in this research was created by
Schiper, Eggli, and Sandoz[1]. Their algorithm is explained, in
detail, within their paper but I will summarize its use here. The
algorithm is used for causal ordering of message receipt at
each process within a system. In order to guarantee causal
receipt, it uses a vector at each process to store the ID of each
previously sent message to any other process within the
system. This vector of previously sent messages is appended
to each message that is sent from the current process and,
when this message arrives at its destination process, the
process checks this vector to make certain that there are no
messages propagating that causally precede the current
message. If there are messages propagating that causally
precede the current message, then the current message is
buffered.

III. CONVERGENCE OF CAUSAL MESSAGE ORDERING

The Schiper-Eggli-Sandoz algorithm buffers messages that are
causally preceded by other messages that have not been
received. The research in this paper seeks to measure the

behavior of the unbuffering of these messages in both average-
case and worst-case computations of this algorithm. In
understanding this behavior, we may be able to find ways to
further optimize the way the algorithm runs, the way messages
are sent by processes or, at the very least, conclude that the
Schiper-Eggli-Sandoz algorithm is or is not scalable.

IV. EXPERIMENT SETUP

For the purpose of this experiment, an implementation of
Schiper-Eggli-Sandoz's algorithm was written in c++. There is
a single channel that the processes all share and the engine is
responsible for picking random messages from the channel to
send to each process, causing that process to use its receive
guarded command. Two message sending schemes were
created: The first causes each process to send its messages in
the opposite order in which they should be received. This
represents the worst-case computation where each process
must buffer n-1 of the messages it receives (the last message is
the one it should have received first in a list of n messages).
The second sending scheme is a random scheme where the
processes send randomly by inserting messages into the
channel destined for randomly selected receivers. This
represents the average-case computation, where message
receipt order is non-deterministic in nature. To verify the
algorithm, console output recorded the data within the
previously sent vector of the message and the current time at
the receiving process. Manual comparisons were made for
multiple runs of the algorithm to insure that it works just as in
Schiper-Eggli-Sandoz's paper. After algorithm verification, the
algorithm was modified to measure the average number of
messages that were buffered before a message ended up being
unbuffered. It did this continuously until the computation
reached a fix point. The point of convergence is when the
average number of messages buffered before a message is
unbuffered, is one. This is because, at this point, every
message that was buffered has been unbuffered (hence why
the average comes out to 1). Tests were run on increments of 5
processes each sending 20 messages, all of the way up to 100
processes.

V. RESULTS

Predictably, the average case performed better than the worst-
case. There was, however, no other conclusive data that could
be obtained from the graph of the average case (see figure 1).
The performance of the algorithm neither deteriorated or
became better as more processes were added. It only varied
within the range of values between 2.9 and 3.5.

Figure 1. Convergence Results with Random Receive. In figure 1, the
results of the tests don't correlate with deterioration or improvement
on the part of the algorithm for increased or decreased numbers of

processes.

The interesting results came when tests were ran with the
reverse-order send scheme: It seems to tend towards the
average-case's complexity as the number of processes increase
(Figure 2).

Figure 2. Convergence results with reverse-order receive. The results
of the tests correlate with faster convergence for increased numbers
of processes.

The results in figure 2 are interesting because it shows that the
algorithm actually scales rather well with increased number of
processes in the worst-case scenario. The reason we see this
type of scalability is actually directly related to how messages
are unbuffered. When a message is unbuffered, the buffer is
checked again to make certain that, by unbuffering the
previous message, no other message can be unbuffered. Since
messages are given to processes at random, the increased
number of processes makes it more likely that you find a
message that causally precedes other messages in the buffer
(or the message that was just received). Furthermore, when a
message that causally precedes other messages is delivered,
large numbers of messages are likely to be delivered all at
once. Consider N messages in the channel in reverse-order:

N, N-1, N-2, N-3, …, 3, 2, 1

Every message from N down to message 2 will have to be
buffered. However, as soon as message 1 is received, every
message from 2 to N will be unbuffered in sequence before
any other messages are sent or received. This, as well as the
fact that a higher number of processes increases the chance
that you receive a message that causally precedes others, is
why large numbers of messages all end up unbuffered
simultaneously under the worst-case scheme and, also, part of
the reason why the worst-case scheme tends towards the
average-case's complexity.

VI. FUTURE WORK

A larger number of tests with a larger number of processes
would give even more accurate answers, especially when it
comes to the reverse-order message scheme since, as noted, it
seemed to tend towards the average-case with higher numbers
of processes. This research leveraged the average in order to
measure the behavior of algorithm's unbuffer feature. The
average is not a robust measure and, so, outlying datapoints
may heavily effect the outcome of the measurements made. A
more robust measure might be required to be results that are
less inclined to be corrupted by bad datapoints. This
algorithm, when run on a sequential machine as opposed to

some sort of cluster or distributed environment, is rather
memory-heavy. It would be easier to run larger tests on actual
distributed systems.

REFERENCES

[1] André Schiper, Jorge Eggli , Alain Sandoz : A New Algorithm to
Implement Causal Ordering. WDAG 1989 : 219-232

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Eggli:Jorge.html
http://www.informatik.uni-trier.de/~ley/db/conf/wdag/wdag89.html#SchiperES89
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sandoz:Alain.html

	I. Introduction
	II. Base work
	III. Convergence Of Causal Message Ordering
	IV. Experiment Setup
	V. Results
	VI. Future Work

