
Comparison of Tarrys Traversal and Awerbuchs

Depth first search

Brian Bartman

Computer Science

Kent State University

Kent, Ohio

bbartman@kent.edu

Abstract — The results and summarization of the different

comparisons of Tarry’s and Awerbuch’s algorithm. The tests

compared message complexity, time complexity and serial

execution time.

Keywords- Distributed algorithms;Depth first search; Traversal

algorithms; Wave algorithms;

I. INTRODUCTION

In this paper I present comparisons of different factors of
both Tarry’s [2] and Awerbuch’s [1] algorithm. Each test was
performed on multiple different topologies with increasing
numbers of nodes. The experiment was designed to show the
differences between both Tarry’s and Awerbuch’s algorithms,
and to than make a decision as to which algorithm would be
better used under which condition.

The rest of the paper is structured as follows: section II
contains a brief background on the two different algorithms,
section III contains an explanation of the experiment and the
variables being tested, section IV presents the results of the
experiment, section V presents my conclusion and section VI
discusses future work.

II. TARRY’S AND AWERBUCH’S ALGORITHMS

Bothe Tarry’s and Awerbuch’s algorithms can be used to
explore a network and retrieve information about it in the form
of a tree. While both do produce a tree only Awerbuch’s
produces a depth first spanning tree. The algorithms have
different time complexities both of which will be demonstrated
within the experiment.

Awerbuch’s algorithm has a time complexity of 4N-2 and a
message complexity of 4E, where N is the number of nodes
within a graph and E is the number of edges.

Tarry’s algorithm is a traversal algorithm, which means that
both its time and message complexity are going to be the same.
Tarry’s has a time complexity of 2E.

III. EXPERIMENT

I tested message complexity, time complexity and serial
execution time. The time and message complexities were used
to show exactly how long and how much would be sent during
the execution of each algorithm. The third measure mean of

serial execution time is mean to determine exactly how many
guarded command would need to be executed in order to
complete the algorithm, this measurement could also be used as
a more generalized form of how much work is being done by
the entire system as whole.

Each algorithm was tested on the following topologies:
chain, clique, ring and star. Each of the different topologies
was tested for constructions between three and 25 nodes. Each
number of nodes between three and 25 was each tested five
times and the average from each of those execution taken.

IV. RESULTS

The results of both the time and message complexities
match the expected results based on the general time and
message complexities determined by the algorithm. Tarry’s
algorithm performed better on sparsely connected topologies in
both time and message complexities as expected. Awerbuch’s
algorithm performed better on the densely connected clique
topology because the number of edges within a clique increases
exponentially.

Consider a chain as an example of a sparsely connected
graph which has N-1 edges in its graph. Tarry’s out performs
Awerbuch’s algorithm on a chain topology as seen for message
complexity in figure 4.1 and for time complexity on figure 4.2.

Figure 4.1: Chain topology messages by number of nodes.

Figure 4.2: Chain topology time by number of nodes.

 While sparsely connected graphs are best for Tarry’s
algorithm when a different topology which is more densely
connected in the case of a clique Awerbuch’s outperforms
Tarry’s in time complexity but not in the number of messages
sent as shown in figure 4.3 and figure 4.4.

 Figure 4.3: clique topology time by number of nodes.

 Figure 4.4: clique topology messages sent by number of nodes.

As figure 4.5 shows for the more densely connected clique
graph Awerbuch’s algorithm does better.

The cases which I find more interesting is those in which
compare the amount of work done by both algorithms, where
work is defined as the number of guarded command executions
divided by the number of nodes. Figure 4.5 depicts the amount
of work being done by both algorithms based on the number of
guarded command executions for a clique topology. This is
also depicted as non-parallel time because if the algorithm was
run sequentially and simply than counting each guarded
command execution that give you the amount of work.

Figure 4.5: Clique topology work graph.

 Figure 4.5 shows the two different amounts of work
being done by both Tarry’s and Awerbuch’s algorithm where
Awerbuch’s requires much more than tarry’s does.

To verify the correctness of my algorithms execution the
program which runs the guarded commands uses software to
output graphs of traversals and the paths which messages take
through the different channels.

V. CONCLUSION

After comparing the results from both algorithms I feel that
there is no better algorithm but which algorithm you use needs
to be based on several factors. The different factors consist of
exactly how many nodes are in your graph, how densely or
sparsely connected the graph is and how much of each of those
nodes do you need to devote to actually completing the task.

VI. FUTURE WORK

For future work I would like to develop a measure of
connectivity for which algorithm will perform better. So for an
arbitrary topology what is the number of either edges or nodes
for which Tarry’s will perform better and which are those
which Awerbuch’s will perform better.

[1] A. Baruch, “A New Distributed Depth-First-Search Algorithm,”
Information Processing Letters 20, pp. 147-150, 1985.

[2] G. Tarry, “Le Problem Des Labyrinthes,” Nouvelles Annales de

Mathematique 14, 1895.

