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I.  INTRODUCTION  

In this paper I present comparisons of different factors of 
both Tarry’s [2] and Awerbuch’s [1] algorithm. Each test was 
performed on multiple different topologies with increasing 
numbers of nodes. The experiment was designed to show the 
differences between both Tarry’s and Awerbuch’s algorithms, 
and to than make a decision as to which algorithm would be 
better used under which condition. 

The rest of the paper is structured as follows: section II 
contains a brief background on the two different algorithms, 
section III contains an explanation of the experiment and the 
variables being tested, section IV presents the results of the 
experiment, section V presents my conclusion and section VI 
discusses future work. 

II. TARRY’S AND AWERBUCH’S ALGORITHMS 

Bothe Tarry’s and Awerbuch’s algorithms can be used to 
explore a network and retrieve information about it in the form 
of a tree. While both do produce a tree only Awerbuch’s 
produces a depth first spanning tree. The algorithms have 
different time complexities both of which will be demonstrated 
within the experiment.  

Awerbuch’s algorithm has a time complexity of 4N-2 and a 
message complexity of 4E, where N is the number of nodes 
within a graph and E is the number of edges. 

Tarry’s algorithm is a traversal algorithm, which means that 
both its time and message complexity are going to be the same. 
Tarry’s has a time complexity of 2E. 

 

III. EXPERIMENT 

I tested message complexity, time complexity and serial 
execution time. The time and message complexities were used 
to show exactly how long and how much would be sent during 
the execution of each algorithm. The third measure mean of 

serial execution time is mean to determine exactly how many 
guarded command would need to be executed in order to 
complete the algorithm, this measurement could also be used as 
a more generalized form of how much work is being done by 
the entire system as whole. 

Each algorithm was tested on the following topologies: 
chain, clique, ring and star. Each of the different topologies 
was tested for constructions between three and 25 nodes. Each 
number of nodes between three and 25 was each tested five 
times and the average from each of those execution taken. 

IV. RESULTS 

The results of both the time and message complexities 
match the expected results based on the general time and 
message complexities determined by the algorithm. Tarry’s 
algorithm performed better on sparsely connected topologies in 
both time and message complexities as expected. Awerbuch’s 
algorithm performed better on the densely connected clique 
topology because the number of edges within a clique increases 
exponentially. 

Consider a chain as an example of a sparsely connected 
graph which has N-1 edges in its graph. Tarry’s out performs 
Awerbuch’s algorithm on a chain topology as seen for message 
complexity in figure 4.1 and for time complexity on figure 4.2. 

 

Figure 4.1: Chain topology messages by number of nodes. 



 

Figure 4.2: Chain topology time by number of nodes. 

 While sparsely connected graphs are best for Tarry’s 
algorithm when a different topology which is more densely 
connected in the case of a clique Awerbuch’s outperforms 
Tarry’s in time complexity but not in the number of messages 
sent as shown in figure 4.3 and figure 4.4. 

 

 Figure 4.3: clique topology time by number of nodes. 

 

 Figure 4.4: clique topology messages sent by number of nodes. 

 

As figure 4.5 shows for the more densely connected clique 
graph Awerbuch’s algorithm does better.  

The cases which I find more interesting is those in which 
compare the amount of work done by both algorithms, where 
work is defined as the number of guarded command executions 
divided by the number of nodes. Figure 4.5 depicts the amount 
of work being done by both algorithms based on the number of 
guarded command executions for a clique topology. This is 
also depicted as non-parallel time because if the algorithm was 
run sequentially and simply than counting each guarded 
command execution that give you the amount of work. 

 

Figure 4.5: Clique topology work graph. 

 Figure 4.5 shows the two different amounts of work 
being done by both Tarry’s and Awerbuch’s algorithm where 
Awerbuch’s requires much more than tarry’s does. 

To verify the correctness of my algorithms execution the 
program which runs the guarded commands uses software to 
output graphs of traversals and the paths which messages take 
through the different channels. 

V. CONCLUSION 

After comparing the results from both algorithms I feel that 
there is no better algorithm but which algorithm you use needs 
to be based on several factors. The different factors consist of 
exactly how many nodes are in your graph, how densely or 
sparsely connected the graph is and how much of each of those 
nodes do you need to devote to actually completing the task. 

VI. FUTURE WORK 

For future work I would like to develop a measure of 
connectivity for which algorithm will perform better. So for an 
arbitrary topology what is the number of either edges or nodes 
for which Tarry’s will perform better and which are those 
which Awerbuch’s will perform better. 
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