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Abstract— Tarry’s algorithm and Awerbuch’s algorithm are 

two important algorithms for traversing connected networks. 

This paper compares the two algorithms by doing experiments on 

them. The experiments measure their time complexity and 

message complexity while varying the number of nodes in the 

network and the density of the network. The results shows that 

Awerbuch’s algorithm is more effective than Tarry’s algorithm in 

time complexity, and Tarry’s algorithm is more effective than 

Awerbuch’s algorithm in message complexity.  

 
Index Terms—Tarry’s algorithm, Awerbuch’s algorithm, time 

complexity, message complexity.  

 

I. INTRODUCTION 

A distributed system is a collection of independent processes 

that communicate with each other in order to accomplish 

certain tasks. It has many applications, for example, wireless 

networks, distributed databases, etc. 

   It is very important to traverse connected networks in 

distributed systems. And the efficiency of the traversal 

algorithms is measured by time complexity and message 

complexity. 

    Tarry’s algorithm and Awerbuch’s algorithm are two well 

known traversal algorithms. It is interesting to compare the 

two algorithms in order to see in what scenario one algorithm 

performs better than the other. It is clear that the number of 

nodes in the network and the density of the network affect the 

performance of the algorithms. 

This paper will experiment and compare the time 

complexity and message complexity of the two algorithms and 

focus on the influence of the number of nodes in the network 

and the density of the network.   

Section II highlights some preliminary knowledge in this 

paper. Section III describes the setup of the experiments 

conducted to evaluate the relative performance of the 

algorithms, demonstrates the results obtained and analyze 

them. Section IV concludes the research conducted and 

highlights future work.  

 
 

II. PRELIMINARY KNOWLEDGE 

A wave algorithm is a distributed algorithm if for each 

computation (also called wave) C: 

1. Termination: C is finite. 

2. Decision: C contains at least one decide event. 

3. Dependence: in each computation C each decide 

event is causally preceded by an event in each 

process.  

 

   Traversal algorithm is a wave algorithm with the following 

properties: 

1. Each computation contains one initiator which starts 

computation by sending one message. 

2. When a process receives a message it either sends out 

one message or decides. 

 

  And the metrics for measuring efficiency of algorithms are: 

1. Time complexity is the number of messages in the 

longest chain of causally dependent events. 

2. Message complexity is number of messages it takes 

the algorithm to carry out specified task. 

 

A traversal algorithm for arbitrary connected networks was 

given by Tarry in [4]. Initiator forwards the token to one of its 

neighbors, each neighbor forwards the token to all other nodes 

and when done returns the token. A node is free to choose any 

node to forward the token to. The algorithm is formulated in 

the following two rules: 

1. A node never forwards the token through the same 

channel twice. 

2. A non-initiator only forwards the token to its father 

(the neighbor from which it first received the token) 

only if there is no other channel possible according to 

the above rule. 

Tarry’s algorithm is a traversal algorithm, and the time 

complexity and message complexity of Tarry’s algorithm are 

2E. 

    Awerbuch gave an improved algorithm of the classical 

depth first search algorithm in [1]. A node holding the token 

for the first time informs all neighbors except its father (and 

the node to which it will forward the token). It constructs 

spanning tree in time proportional to the number of nodes in 

linear time, and prevents token forwarding over frond edges 

because each process knows which neighbors were visited 
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before it forwards the token. The node notifies its neighbors 

that it is visited by sending <vis> messages to them. The token 

is only forwarded when these neighbors all acknowledged 

reception. The token is only forwarded to nodes that were not 

yet visited by the token (except when a node sends the token to 

its father). And its time complexity is 4N-2, message 

complexity is 4E. 

III. EXPERIMENTS 

We describe some experiments on the time complexity and 

message complexity of Tarry’s algorithm and Awerbuch’s 

algorithm while varying the number of nodes and density of 

the network.  

A. Experimental Setup 

Because we need to vary the number of nodes and density of 

the network, we use random generated graphs to do the 

experiments. Random graph is represented by adjacency 

matrix. For example, Fig. 1 shows a random graph and its 

adjacency matrix.  

 
 1 2 3 4 5 

1 0 1 1 0 0 

2 1 0 1 1 0 

3 1 1 0 1 1 

4 0 1 1 0 1 

5 0 0 1 1 0 

 
Fig. 1.  An example random graph and its adjacency matrix. 

 

The probability of there is an edge between two nodes is 

called connection probability. The experiments in this paper 

will use connection probability 30% as sparse graphs, 50% as 

moderate graphs, and 70% as dense graphs.  

Because two nodes are trivial, the random graphs used in 

the experiments have at least three nodes. The experiments do 

all data in range of 3 to 10 because the Tarry’s algorithm and 

Awerbuch’s algorithm differentiate there. And the maximum 

number of nodes of the examples in this paper is 50 because 

the difference is more and more pronounced and stable in 

range 30-50.   

B. Experiment Results 

First of all, this paper shows experiment results of time 

complexity. The first experiment is the time complexity of 

connection probability 30% shown in Fig. 2. It shows that 

Tarry’s algorithm is better than Awerbuch’s algorithm in range 

3-9 nodes, Tarry’s algorithm’s complexity is almost same as 

Awerbuch’s algorithm’s complexity in range 10-11 nodes,  

Awerbuch’s algorithm is better than Tarry’s algorithm in range 

equal to or more than 12 nodes, and the difference is more and 

more pronounced as scale of graphs increases. Another 

observation is that Awerbuch’s algorithm is more stable than 

Tarry’s algorithm.  

The second experiment is the time complexity of connection 

probability 50% shown in Fig. 3. It shows that Tarry’s 

algorithm is better than Awerbuch’s algorithm in range 3-7 

nodes, Tarry’s algorithm’s complexity is almost same as 

Awerbuch’s algorithm’s complexity in range 7-8 nodes,  

Awerbuch’s algorithm is better than Tarry’s algorithm in range 

equal to or more than 9 nodes, and the difference is more and 

more pronounced as scale of graphs increases. Another 

observation is that Awerbuch’s algorithm is more stable than 

Tarry’s algorithm. 

The third experiment is the time complexity of connection 

probability 70% shown in Fig. 4. It shows that Tarry’s 

algorithm is better than Awerbuch’s algorithm in range 3-4 

nodes, Tarry’s algorithm’s complexity is almost same as 

Awerbuch’s algorithm’s complexity in range 4-5 nodes,  

Awerbuch’s algorithm is better than Tarry’s algorithm in range 

equal to or more than 6 nodes, and the difference is more and 

more pronounced as scale of graphs increases. Another 

observation is that Awerbuch’s algorithm is more stable than 

Tarry’s algorithm. 
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Fig. 2.  Time complexity at connection probability of 30%. 

 

Comparison of Time Complexity at 

Connection Probability of 50%
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Fig. 3.  Time complexity at connection probability of 50%. 

 

   Next, this paper shows experiment results of mesage 

complexity. The first experiment is the message complexity of 

connection probability 30% shown in Fig. 5. It shows that 

Tarry’s algorithm is always better than Awerbuch’s algorithm, 
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the difference is not distinguishable in range 3 to 15 nodes, is 

distinguishable in range more than 15 nodes, and becomes 

more and more pronounced as scale of graphs increases. 

Another observation is that Awerbuch’s algorithm increases 

almost twice speed of Tarry’s algorithm. 

Comparison of Time Complexity at 
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Fig. 4.  Time complexity at connection probability of 70%. 
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Fig. 5.  Message complexity at connection probability of 30%. 
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Fig. 6.  Message complexity at connection probability of 50%. 

 

Comparison of Message Complexity at 

Connection Probability of 70%
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Fig. 7.  Message complexity at connection probability of 70%. 

    The second experiment is the message complexity of 

connection probability 50% shown in Fig. 6. It shows that 

Tarry’s algorithm is always better than Awerbuch’s algorithm, 

the difference is not distinguishable in range 3 to 10 nodes, is 

distinguishable in range more than 10 nodes, and becomes 

more and more pronounced as scale of graphs increases. 

Another observation is that Awerbuch’s algorithm increases 

almost twice speed of Tarry’s algorithm. 

    The third experiment is the message complexity of 

connection probability 70% shown in Fig. 7. It shows that 

Tarry’s algorithm is always better than Awerbuch’s algorithm, 

the difference is not distinguishable in range 3 to 7 nodes, is 

distinguishable in range more than 8 nodes, and becomes more 

and more pronounced as scale of graphs increases. Another 

observation is that Awerbuch’s algorithm increases almost 

twice speed of Tarry’s algorithm. 

C. Analysis of Experiment results 

 Awerbuch’s algorithm’s time complexity is better than 

Tarry’s algorithm when the number of nodes in the network is 

sufficiently large because the time complexity of Tarry’s 

algorithm is 2E since all processes have been visited and each 

channel has been used once in both directions, and time 

complexity of Awerbuch’s algorithm is 4N-2 since token 

traverses N-1 edges twice and is delayed at every root node for 

two time units. And when the graphs become denser, Tarry’s 

algorithm’s time complexity is O(N
2
), but Awerbuch’s 

algorithm’s time complexity is still O(N). 

    And Tarry’s algorithm’s message complexity is better than 

Awerbuch’s algorithm because the message complexity of 

Tarry’s algorithm is 2E since it is same as time complexity, 

and the message complexity of Awerbuch’s algorithm is 4E 

since <vis> and <ack> messages are sent along each frond 

edge twice, <vis> is sent from father to son, <ack> is sent from 

son to father, and <tok> is sent twice along each tree edge. 

And when the graphs become denser, both Tarry’s algorithm’s 

and Awerbuch’s algorithms’ message complexities are O(N
2
). 

IV. CONCLUSIONS AND FUTURE WORK 

This paper compares the performance of Tarry’s algorithm 

and Awerbuch’s algorithm by varying the number of nodes 

and density of the network. The conclusions are, first 

Awerbuch’s algorithm is more effective than Tarry’s algorithm 

in time complexity. Second, Tarry’s algorithm is more 

effective than Awerbuch’s algorithm in message complexity. 

Third, When the graphs become denser, both time and 

message complexity of Tarry’s algorithm, and message 

complexity of Awerbuch’s algorithm are quadratic to the 

number of nodes in the network, but the time complexity of 

Awerbuch’s algorithm is still linear to the number of nodes in 

the network.  

And the future plans for this research are, first it is 

interesting to explore the influence of density of graphs on the 

algorithms, that is, change the density of the network while the 

number of nodes in the network is fixed. Second, since we 

measure time complexity and message complexity by varying 

the number of nodes in the network, we need to consider 
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whether we can measure the complexities while varying the 

number of edges in the network, not nodes. Third, we will do 

our experiments on real distributed systems, for example, multi 

hop ad hoc wireless network, wireless sensor network, and 

Tiny OS, etc.  
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