
 1

Abstract— Tarry’s algorithm and Awerbuch’s algorithm are

two important algorithms for traversing connected networks.

This paper compares the two algorithms by doing experiments on

them. The experiments measure their time complexity and

message complexity while varying the number of nodes in the

network and the density of the network. The results shows that

Awerbuch’s algorithm is more effective than Tarry’s algorithm in

time complexity, and Tarry’s algorithm is more effective than

Awerbuch’s algorithm in message complexity.

Index Terms—Tarry’s algorithm, Awerbuch’s algorithm, time

complexity, message complexity.

I. INTRODUCTION

A distributed system is a collection of independent processes

that communicate with each other in order to accomplish

certain tasks. It has many applications, for example, wireless

networks, distributed databases, etc.

 It is very important to traverse connected networks in

distributed systems. And the efficiency of the traversal

algorithms is measured by time complexity and message

complexity.

 Tarry’s algorithm and Awerbuch’s algorithm are two well

known traversal algorithms. It is interesting to compare the

two algorithms in order to see in what scenario one algorithm

performs better than the other. It is clear that the number of

nodes in the network and the density of the network affect the

performance of the algorithms.

This paper will experiment and compare the time

complexity and message complexity of the two algorithms and

focus on the influence of the number of nodes in the network

and the density of the network.

Section II highlights some preliminary knowledge in this

paper. Section III describes the setup of the experiments

conducted to evaluate the relative performance of the

algorithms, demonstrates the results obtained and analyze

them. Section IV concludes the research conducted and

highlights future work.

II. PRELIMINARY KNOWLEDGE

A wave algorithm is a distributed algorithm if for each

computation (also called wave) C:

1. Termination: C is finite.

2. Decision: C contains at least one decide event.

3. Dependence: in each computation C each decide

event is causally preceded by an event in each

process.

 Traversal algorithm is a wave algorithm with the following

properties:

1. Each computation contains one initiator which starts

computation by sending one message.

2. When a process receives a message it either sends out

one message or decides.

 And the metrics for measuring efficiency of algorithms are:

1. Time complexity is the number of messages in the

longest chain of causally dependent events.

2. Message complexity is number of messages it takes

the algorithm to carry out specified task.

A traversal algorithm for arbitrary connected networks was

given by Tarry in [4]. Initiator forwards the token to one of its

neighbors, each neighbor forwards the token to all other nodes

and when done returns the token. A node is free to choose any

node to forward the token to. The algorithm is formulated in

the following two rules:

1. A node never forwards the token through the same

channel twice.

2. A non-initiator only forwards the token to its father

(the neighbor from which it first received the token)

only if there is no other channel possible according to

the above rule.

Tarry’s algorithm is a traversal algorithm, and the time

complexity and message complexity of Tarry’s algorithm are

2E.

 Awerbuch gave an improved algorithm of the classical

depth first search algorithm in [1]. A node holding the token

for the first time informs all neighbors except its father (and

the node to which it will forward the token). It constructs

spanning tree in time proportional to the number of nodes in

linear time, and prevents token forwarding over frond edges

because each process knows which neighbors were visited

Comparison of Tarry’s Algorithm and

Awerbuch’s Algorithm

Mike Yuan

Department of Computer Science, Kent State University, Kent OH 44242

myuan@cs.kent.edu

 2

before it forwards the token. The node notifies its neighbors

that it is visited by sending <vis> messages to them. The token

is only forwarded when these neighbors all acknowledged

reception. The token is only forwarded to nodes that were not

yet visited by the token (except when a node sends the token to

its father). And its time complexity is 4N-2, message

complexity is 4E.

III. EXPERIMENTS

We describe some experiments on the time complexity and

message complexity of Tarry’s algorithm and Awerbuch’s

algorithm while varying the number of nodes and density of

the network.

A. Experimental Setup

Because we need to vary the number of nodes and density of

the network, we use random generated graphs to do the

experiments. Random graph is represented by adjacency

matrix. For example, Fig. 1 shows a random graph and its

adjacency matrix.

 1 2 3 4 5

1 0 1 1 0 0

2 1 0 1 1 0

3 1 1 0 1 1

4 0 1 1 0 1

5 0 0 1 1 0

Fig. 1. An example random graph and its adjacency matrix.

The probability of there is an edge between two nodes is

called connection probability. The experiments in this paper

will use connection probability 30% as sparse graphs, 50% as

moderate graphs, and 70% as dense graphs.

Because two nodes are trivial, the random graphs used in

the experiments have at least three nodes. The experiments do

all data in range of 3 to 10 because the Tarry’s algorithm and

Awerbuch’s algorithm differentiate there. And the maximum

number of nodes of the examples in this paper is 50 because

the difference is more and more pronounced and stable in

range 30-50.

B. Experiment Results

First of all, this paper shows experiment results of time

complexity. The first experiment is the time complexity of

connection probability 30% shown in Fig. 2. It shows that

Tarry’s algorithm is better than Awerbuch’s algorithm in range

3-9 nodes, Tarry’s algorithm’s complexity is almost same as

Awerbuch’s algorithm’s complexity in range 10-11 nodes,

Awerbuch’s algorithm is better than Tarry’s algorithm in range

equal to or more than 12 nodes, and the difference is more and

more pronounced as scale of graphs increases. Another

observation is that Awerbuch’s algorithm is more stable than

Tarry’s algorithm.

The second experiment is the time complexity of connection

probability 50% shown in Fig. 3. It shows that Tarry’s

algorithm is better than Awerbuch’s algorithm in range 3-7

nodes, Tarry’s algorithm’s complexity is almost same as

Awerbuch’s algorithm’s complexity in range 7-8 nodes,

Awerbuch’s algorithm is better than Tarry’s algorithm in range

equal to or more than 9 nodes, and the difference is more and

more pronounced as scale of graphs increases. Another

observation is that Awerbuch’s algorithm is more stable than

Tarry’s algorithm.

The third experiment is the time complexity of connection

probability 70% shown in Fig. 4. It shows that Tarry’s

algorithm is better than Awerbuch’s algorithm in range 3-4

nodes, Tarry’s algorithm’s complexity is almost same as

Awerbuch’s algorithm’s complexity in range 4-5 nodes,

Awerbuch’s algorithm is better than Tarry’s algorithm in range

equal to or more than 6 nodes, and the difference is more and

more pronounced as scale of graphs increases. Another

observation is that Awerbuch’s algorithm is more stable than

Tarry’s algorithm.

Comparison of Time Complexity at

Connection Probability of 30%

0

200

400

600

800

0 20 40 60

Number of nodes in graph

T
im

e
 C

o
m

p
le

x
it

y

Tarry's algorithm

Awerbuch's

algorithm

Fig. 2. Time complexity at connection probability of 30%.

Comparison of Time Complexity at

Connection Probability of 50%

0

200

400

600

800

1000

1200

1400

0 20 40 60

Number of nodes in graph

T
im

e
 c

o
m

p
le

x
it

y

Tarry's algorithm

Awerbuch's

algorithm

Fig. 3. Time complexity at connection probability of 50%.

 Next, this paper shows experiment results of mesage

complexity. The first experiment is the message complexity of

connection probability 30% shown in Fig. 5. It shows that

Tarry’s algorithm is always better than Awerbuch’s algorithm,

1

3

2

4

5

 3

the difference is not distinguishable in range 3 to 15 nodes, is

distinguishable in range more than 15 nodes, and becomes

more and more pronounced as scale of graphs increases.

Another observation is that Awerbuch’s algorithm increases

almost twice speed of Tarry’s algorithm.

Comparison of Time Complexity at

Connection Probability of 70%

0

500

1000

1500

2000

0 20 40 60

Number of nodes in graph

T
im

e
 C

o
m

p
le

x
it

y

Tarry's algorithm

Awerbuch's

algorithm

Fig. 4. Time complexity at connection probability of 70%.

Comparison of Message Complexity at

Connection Probability of 30%

0

500

1000

1500

2000

0 20 40 60

Number of nodes in graph

M
e
s
s
a
g

e
 C

o
m

p
le

x
it

y

Tarry's algorithm

Awerbuch's

algorithm

Fig. 5. Message complexity at connection probability of 30%.

Comparison of Message Complexity at

Connection Probability of 50%

0

500

1000

1500

2000

2500

3000

0 20 40 60

Number of nodes in graph

M
e
s
s
a
g

e
 C

o
m

p
le

x
it

y

Tarry's algorithm

Awerbuch's

algorithm

Fig. 6. Message complexity at connection probability of 50%.

Comparison of Message Complexity at

Connection Probability of 70%

0

1000

2000

3000

4000

0 20 40 60

Number of nodes in graph

M
e
s
s
a
g

e
 C

o
m

p
le

x
it

y

Tarry's algorithm

Awerbuch's

algorithm

Fig. 7. Message complexity at connection probability of 70%.

 The second experiment is the message complexity of

connection probability 50% shown in Fig. 6. It shows that

Tarry’s algorithm is always better than Awerbuch’s algorithm,

the difference is not distinguishable in range 3 to 10 nodes, is

distinguishable in range more than 10 nodes, and becomes

more and more pronounced as scale of graphs increases.

Another observation is that Awerbuch’s algorithm increases

almost twice speed of Tarry’s algorithm.

 The third experiment is the message complexity of

connection probability 70% shown in Fig. 7. It shows that

Tarry’s algorithm is always better than Awerbuch’s algorithm,

the difference is not distinguishable in range 3 to 7 nodes, is

distinguishable in range more than 8 nodes, and becomes more

and more pronounced as scale of graphs increases. Another

observation is that Awerbuch’s algorithm increases almost

twice speed of Tarry’s algorithm.

C. Analysis of Experiment results

 Awerbuch’s algorithm’s time complexity is better than

Tarry’s algorithm when the number of nodes in the network is

sufficiently large because the time complexity of Tarry’s

algorithm is 2E since all processes have been visited and each

channel has been used once in both directions, and time

complexity of Awerbuch’s algorithm is 4N-2 since token

traverses N-1 edges twice and is delayed at every root node for

two time units. And when the graphs become denser, Tarry’s

algorithm’s time complexity is O(N
2
), but Awerbuch’s

algorithm’s time complexity is still O(N).

 And Tarry’s algorithm’s message complexity is better than

Awerbuch’s algorithm because the message complexity of

Tarry’s algorithm is 2E since it is same as time complexity,

and the message complexity of Awerbuch’s algorithm is 4E

since <vis> and <ack> messages are sent along each frond

edge twice, <vis> is sent from father to son, <ack> is sent from

son to father, and <tok> is sent twice along each tree edge.

And when the graphs become denser, both Tarry’s algorithm’s

and Awerbuch’s algorithms’ message complexities are O(N
2
).

IV. CONCLUSIONS AND FUTURE WORK

This paper compares the performance of Tarry’s algorithm

and Awerbuch’s algorithm by varying the number of nodes

and density of the network. The conclusions are, first

Awerbuch’s algorithm is more effective than Tarry’s algorithm

in time complexity. Second, Tarry’s algorithm is more

effective than Awerbuch’s algorithm in message complexity.

Third, When the graphs become denser, both time and

message complexity of Tarry’s algorithm, and message

complexity of Awerbuch’s algorithm are quadratic to the

number of nodes in the network, but the time complexity of

Awerbuch’s algorithm is still linear to the number of nodes in

the network.

And the future plans for this research are, first it is

interesting to explore the influence of density of graphs on the

algorithms, that is, change the density of the network while the

number of nodes in the network is fixed. Second, since we

measure time complexity and message complexity by varying

the number of nodes in the network, we need to consider

 4

whether we can measure the complexities while varying the

number of edges in the network, not nodes. Third, we will do

our experiments on real distributed systems, for example, multi

hop ad hoc wireless network, wireless sensor network, and

Tiny OS, etc.

ACKNOWLEDGMENT

I acknowledge the help given to me by Dr. Nesterenko and

Tom Clouser during working on my project.

REFERENCES

[1] A. Baruch, “A New Distributed Depth-First-Search Algorithm,”

Information Processing Letters 20, pp. 147-150, 1985.

[2] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-

hoc routing: Of theory and practice,” 22nd ACM Symposium on the

Principles of Distributed Computing (PODC), Jul. 2003.

[3] M. Miyashita, M. Nesterenko, “2FACE: Bi-Directional Face Traversal

for Efficient Geometric Routing,” technical report TR-KSU-CS-2006-

06, Kent State University.

[4] G. Tarry, “Le Problem Des Labyrinthes,” Nouvelles Annales de

Mathematique 14, 1895.

[5] G. Tel, Introduction to Distributed Algorithms , 2000.

[6] A. Vora and M. Nesterenko., “Void traversal for guaranteed delivery in

geometric routing,” the 2nd IEEE International Conference on Mobile

Ad-hoc and Sensor Systems (MASS), pp. 63–67, Nov. 2005.

[7] D. Watson, M. Nesterenko, “MULE: Hybrid Simulator for Testing and

Debugging Wireless Sensor Networks,” Second International Workshop

on Sensor and Actor Network Protocols and Applications, pp. 67-71,

Aug. 2004.

[8] Slides of advanced operating systems class,

http://deneb.cs.kent.edu/~mikhail/classes/aos.f07/.

[9] TOSSIM User Manual,

http://deneb.cs.kent.edu/~mikhail/classes/aos.f06/aos_tos_tutorial/tos_t

utorial.html,2006.

[10] TinyOs mailing Archive,

http://deneb.cs.kent.edu/~mikhail/classes/aos.f06/aos_tos_tutorial/tos_t

utorial.html.

