

1

Abstract— An experimental setup is proposed for comparing

and analyzing clock synchronization algorithms in distributed

system. Clock synchronization is required for transaction

processing applications, process control applications etc. This

experimental setup generates transmission delays and

synchronization errors for processes and the clock

synchronization algorithms try to synchronize the clocks in the

system under the effect of these barriers. Two centralized clock

synchronization algorithms are used for experiment - Cristian’s

and Berkeley clock synchronization algorithms.

Keywords— Clock Synchronization, Coordinator, Distributed

System, Global Time, Simulation Engine, Synchronization Error,

Transmission Delay, Time Server.

I. INTRODUCTION

he two clock synchronization algorithms used for

experiment in this report are Cristian’s and Berkeley clock

synchronization algorithms. A distributed system consists of

set of processes and these processes communicate by

exchanging messages. In distributed system synchronization

between processes is required for various purposes, for

example in transaction processing and process control

operations. For processes to be synchronized and have a

common view of global time, clock synchronization algorithms

are applied for ensuring that physically dispersed processes

have a common knowledge of time.

 The clock synchronization algorithms are of following

types:

1) Distributed Algorithm: NTP (Network Time Service

Protocol)

 2) Centralized Algorithm:

 a) Cristian’s clock synchronization algorithm.

 b) Berkeley clock synchronization algorithm.

 Clock synchronization algorithms can be used to

synchronize clocks with respect to an external time reference

(Cristian’s algorithm) or to synchronize clocks among

themselves. In the first approach a time server shows real time

and all other clocks try to be as close to this time as possible.

In the second approach (Berkeley Algorithm) real time is not

available from within the system, and the goal is then to

minimize the maximum difference between any two clocks. An

internal clock synchronization algorithm enables a process to

measure the duration of distributed activities that start on one

process and terminate on another one.

 In this report we will analyze and compare performances

of Cristian’s and Berkeley clock synchronization algorithms on

a set of processes having same set of variables and instructions

and are asynchronous (each process execute actions with

arbitrary speeds). A simulation engine is used for generating

transmission delays and synchronization errors. The

synchronization algorithms try to minimize effect of these

delays and errors.

The experiment is done on the basis of these parameters on

varying number of processes in the system. Algorithm runs for

a finite number of iterations in order to minimize the effect of

delays and errors.

II. CLOCK SYNCHRONIZATION PROBLEM

Physical clock maintained by each process differ from the

reference time. This is called clock drift. This drift is caused

due to physical parameters like heat and temperature. As the

time passes the drift keeps on increasing. Due to this behavior

of clocks there exists a clock skew in a distributed system.

Two clocks are said to be synchronized if they differ from

each other by a specified value. So, we need algorithms which

can make these clocks to differ from each other by not more

than a specified value.

III. SIMULATION ENGINE

Simulation represents key characteristics or behaviors of a

selected system. Simulation Engine extends this idea, for

measuring the performance of clock synchronization

algorithms. It generates transmission delays and

synchronization errors for clock synchronization algorithms.

The algorithms work on these parameters and try to

synchronize processes in a system. Simulation engine

maintains a message queue for adding request messages from

the processes.

A. Concept of Time Simulation

Time simulation does not have a predefined unit for time. It

Simulation Engine for Analysis and Comparison

between Cristian’s and Berkeley clock

synchronization algorithms

Rahul Sehgal,

Department of Computer Science, Kent State University

rsehgal@cs.kent.edu

T

2

does not have a base value for starting of the time. The value

of simulation time is current time in the model. Simulation

time advances on the basis of change of state in the model. It

never goes back, it only advances. In our experiment

simulation engine maintains a global time represented by

“gtime”. The global time increases when the state of the

system changes. Sending “request message” to the message

queue, replying to messages in the message queue,

transmission delay generated for “reply messages” and finding

average for internal synchronization of clocks. This global

time is used by algorithms for synchronizing clocks.

B. Processes, Transmission Delays and Synchronization

Error

Processes are generated randomly for the system. The

system is asynchronous and each process has same set of

variables and instructions. They have unique identifiers. The

processes communicate only by exchanging messages. In a

system a process is randomly set as Coordinator (Berkeley

System) or a Time Sever (Cristian System). Processes send

requests to these Coordinator or Time Sever for

synchronizing themselves.

Delay is generated for each process. Once the global clock

reaches this value the request in delivered in the message

queue and when the requests are delivered a transmission

delay is calculated for each process.

Synchronization Error is calculated in Berkeley algorithm

when the Coordinator sends reply about the correction to each

process in the system.

IV. EXPERIMENT

A. Apparatus

In Cristian’s algorithm each process sends a request and a

delay is generated at each process, after which the request will

be delivered to the message queue. The simulation engine

removes the message from queue head, calculates a random

transmission delay and sends a reply message to the

destination message by adding destination identifier to the

message and message delay. The calculated delay is

represented as delay_at_rqst_queue in the equation.

Each process makes 30 requests to the Time Server and then

averages the delay values which it gets in each “reply

message” from the time server.

A difference between the current process and the global

time (Time Server) is calculated. These differences are

displayed in the results.

The run () method for Cristian’s Algorithm:

- The messages are delivered in the increasing

order of delay, to Time Server.

- Time Server computes message_queue_delay (states for

which the message was in queue) sends a reply message to

requesting process.

- Process sends 30 requests to the Time Server and gets a

value for delay at request queue.

- Calculates the average on 30 delay values and calculates its

local time.

In Berkeley algorithm the Simulation Engine (Coordinator)

polls processes and measures the clock difference between its

time and time of other process in the system. It selects a largest

set of processes that do not differ from its value by more than a

fixed value (in the experiment fixed value is selected as 20

milliseconds). It then averages the differences of these

processes. It also calculates a synchronization error for each

process clock. The Coordinator asks each process to correct its

clock by a quantity equal to the difference between the average

value and the previously measured difference between the

clock of the Coordinator and that of a process.

The run () method for Berkeley Algorithm:

- Coordinator calculates time difference between itself and

other processes in the system.

- Coordinator polls processes with a bound on difference (in

experiment this value is 20 milliseconds)

- Calculates the average

- Calculates an error which represents error in approximation

of other clocks in the system.

- Inform all the processes about the correction.

- Does 10 iterations of above step.

B. Assumptions

In Cristian’s Algorithm, all the process send request for

synchronizing its time. All processes suffer transmission

delay. Each process makes 30 [1] requests to Time Server.

There are no faulty processes in the system (Time Server

never crashes). Processes are asynchronous and delays are

generated randomly. A process sends request after waiting

random amount of time.

In Berkeley Algorithm, all the processes get message in each

iteration, they are asynchronous. The Coordinator never

crashes. The error calculated by Coordinator is between 1-2

milliseconds and generated randomly.

C. Equations

 In Cristian’s Algorithm,

 Current Time = gtime + (delay_at_rqst_queue)/2

gtime = global time (Time Server), (1)

delay_at_rqst_queue = averaged delay value for 30 replies.

In Berkeley Algorithm,

 Average value for correction = (Total of time difference

of each clock from Coordinator)/ (Total number of process

polled by the coordinator). (2)

D. Results

The experiment is conducted on 5, 10, 20 and 30 processes

in the system.

In Cristian algorithm each process makes 30 requests to the

Time Server and then calculates an average on these delay

values. In results all the processes of the system are shown and

the difference between them and global time are also shown.

In Berkeley algorithm an average is calculated by the

coordinator on the basis of equation (2). The graph is

generated for one process by showing its difference at each

3

iteration.

Comparison for 5 processes w ith transmission

delays and error

0

2

4

6

8

10

12

14

16

18

Global Time(in milliseconds)

D
if

fe
re

n
c

e

fr

o
m

 g
lo

b
a
l
ti

m
e
(i

n

m
il
li

s
e
c
o

n
d

s
)

Cristian

Berkeley

 Figure 1. Comparison of Cristian and Berkeley algorithm

 for a system of 5 processes.

 Note: For all diagrams, the Berkeley curve shows the

difference curve for one process on which 10 iterations of

Berkeley algorithm was performed. The value of the 4

processes on which Berkeley Algorithm were performed is

shown in Table 1. Cristian curve shows the difference of all

the processes in the system from the global time. Also in a

system of five processes one process is Time Server, therefore

only four process are shown in the curve.

Observation: In Cristian curve shows tendency to converge

as the global time increases. Berkeley algorithm converge a

process at a very fast rate with every iteration.

Processes Itr 1 Itr 2 Itr 3 Itr 4

p0 16 13.2857 5.57985 3.16838

p1 17 12.2857 2.57985 6.16838

p2 15 14.2857 5.57985 6.16838

p3 17 13.2857 4.57985 4.16838
Table 1. Four iterations for a system of five processes, running

Berkeley Algorithm for synchronizing their clocks.

Comparison on 10 nodes with transmission delays

and error

0

2

4

6

8

Global Time(in milliseconds)

D
if

fe
re

n
c
e
 f

ro
m

 g
lo

b
a
l
ti

m
e
(i

n
 m

il
li

s
e
c
o

n
d

s
)

Cristian

Berkeley

 Figure 2. Comparison of Cristian and Berkeley

 algorithm for a system of 10 processes.

Observation: Cristian curve shows that as the number of

processes increase the difference of each process from global

time varies in a very small interval. In Berkeley Algorithm the

process gets closer to global time value.

Comparison on 20 processes with transmission delays and

error

0

0.5

1

1.5

2

2.5

3

3.5

Global Time(in milliseconds)

D
if

fe
re

n
c

e
 f

ro
m

 g
lo

b
a

l
ti

m
e

(i
n

 m
il

li
s

e
c

o
n

d
s

)

Cristian

Berkeley

Figure 3. Comparison of Cristian and Berkeley algorithm

for a system of 20 processes.

Observation: There is randomness in processes of Cristian

Curve due to variable transmission delay. But this randomness

is in a finite range. Berkeley curve shows that clock of the

process converges closer to the global time after 10 iterations.

4

Comparison on 30 nodes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Global Time(in milliseconds)

D
if

fe
re

n
c
e
 f

ro
m

 g
lo

b
a
l
ti

m
e
(i

n
 m

il
li
s
e
c
o

n
d

s
)

Cristian

Berkeley

Figure 4. Comparison of Cristian and Berkeley algorithm

for a system of 30 processes. Berkeley curve shows time

difference of a process from global time. Cristian curve

 shows time difference all the processes.

Observation:

 Cristian curve shows that as the number of processes increase

the difference of each process from global time varies in a very

small interval. Berkeley curve shows that number of iterations

brings clock value closer to global time.

V. FUTURE WORK

Modify the experimental setup for faulty processes and imply a

polling algorithm if the time server or coordinator crashes.

Implement Cristian Algorithm over Berkeley algorithm

because Berkeley algorithm shows better performance when

internal synchronization is performed. But the system doesn’t

synchronize itself with external resources. Or improve

Cristian’s Algorithm because external synchronization leads to

internal synchronization. That means externally synchronized

processes are internally synchronized, too.

Results with clock drift and clock skew could give a better

understanding of performance of these algorithms.

VI. CONCLUSION

Clock synchronization is required for internal and external

synchronization of clocks for various transaction processes and

process controls. A more efficient algorithm will lead to a

better convergence.

REFERENCES

[1] F. Cristian Probabilistic clock synchronization. In Distributed

Computing, volume 3, pages 146-158. Springer Verlag, 1989

[2] R. Gusella and S. Zatti, "TEMPO-A network time controller for a

distributed Berkeley UNIX system."IEEE Distributed Processing Tech.

Comm. Newslett., vol. 6, no. S1-2, pp. 7-15, June 1984.

[3] J.Y. Halpern et al., "Fault-Tolerant Clock Synchronization,"Proc. Third

Ann. ACM Symp. Principles of Distributed Computing, ACM, New

York, 1984, pp. 89-102.

[4] T. Clouser, R. Thomas, M. Nesterenko "Emuli: Emulated

Stimuli for Wireless Sensor Network Experimentation", technical

report TR-KSU-CS-2007-04, Kent State Univesity .

