
1


Abstract—Suzuki Kasami’s and Raymond’s Tree are

distributed Algorithms that realize mutual exclusion among N
nodes in a computer network by usage of a single token. Suzuki
Kasami’s Algorithm requires 0 or at most N number of messages
to enter into critical section. Raymond’s Tree Algorithm requires
O(Log N) message under light demand and reduced number of
messages exchanged per critical section to approximately 4
messages under saturated demand. Suzuki Kasami’s Algorithm
Operates on a fully connected network, however Raymond’s uses
a spanning tree of the network.

Additional Keywords: — critical section, message exchange,
delay, privilege message.

I. INTRODUCTION

The algorithms are used for N computer network nodes,
communicating by message passing rather than shared
memory. Message delivery is guaranteed by the
communication network however neither the time (state) nor
the order of message arrival can be predicted. Nodes may enter
critical section out of order. The performance parameters to be
measured for a mutual exclusion algorithm other than number
of messages are

Synchronization delay(Sd): The time measured between when
one site leaves and next one enter.
Response Time: The time interval a site waits its CS execution
to be over after request has been sent.
Throughput=1/(Sd + E): Where Sd is the average
synchronization delay and E is the average critical section
execution time.

Suzuki Kasami’s Algorithm:
A node having the token is allowed to enter into the critical
section. A single node has the privilege and a node requesting
critical section broadcast’s a message to all the other nodes. A
site sends the privilege if the token is idle with the site. The
site having token can continuously enter critical section until it
sends the token to some other site. The request message has

the format REQUEST(j,n), which means site j is requesting its
nth critical section. Each node maintains an array RN of size N
for recording latest sequence number received from each of the
other nodes. The PRIVILEGE message has the format
PRIVILEGE (Q, LN), where Q is queue of nodes requesting
critical section and LN is an array of size N where LN[j] is the
latest critical section executed by a node j. If RN[j] = LN[j]+1
means a node j has sent a request for its new sequence of
critical section, and the node having the privilege adds this to
the queue and if token is idle sends the node sends the
PRIVILEDGE(LN,Q) to the node requesting critical section.
Number of message per Critical section entry is (N-1)
REQUEST messages plus 1 PRIVILEGE message so N
messages in all or 0 if the node having the token wants to enter
critical section.

Raymond’s Tree Algorithm:

In this Algorithm nodes are arranged in an un-rooted tree
structure. All messages are sent along the undirected edges of
the tree. Every node knows about the existence of its
immediate neighbors. Again a PRIVILEGE message has to be
received by a node to enter into critical section. At every node
a variable HOLDER points to a node along the path to the
PRIVILEGE. At node having the PRIVILEGE the HOLDER
points to itself. When a non-privileged node wants to enter
critical section it generates a request and adds it to its
REQUESTQ, A REQUESTQ is maintained by each of the
nodes. If it has not sent a message along the directed path
towards the node pointed by the holder variable, it sends a
message along the edge to its holder. On receiving a message
the nodes sends it to its holder along path before that the node
adds the request in its REQUESTQ. When the request reaches
the node having the PRIVILEGE, if the token is idle with the
node it sends the PRIVILEGE to the node from which it
received the message. On receiving the PRIVILEGE if the
nodes own id is top of the queue, it executes critical section
else sends the PRIVILEGE to the node pointed by the id, and
set its holder to point to that node. The number of messages
required to execute critical section can be 0 or typically 2D,
where D is the diameter of the tree on which the algorithm is
running, however this is reduced to maximum of four
messages per critical section execution under full load when

Performance Comparison of Suzuki Kasami’s
and Raymond’s Tree Token Based Mutual

Exclusion Algorithm’s

Sagar Panchariya,
sagar.panchariya@gmail.com,
 KENT STATE UNIVERSITY, OHIO.

2

the topology is proper tree and two messages when it’s a chain.

Experimental Setup:

To measure performance of the algorithms as given by the two
authors, a experimental setup was made to simulate the
distributed nodes. The simulation takes in the number of nodes
on which the algorithm has to run. The experiments were
carried on number of nodes approx 30, 50 and 100 and the
readings were recorded for loads as under 1 node requesting at
a time (light load condition), half-load and full load condition.
The numbers of messages were recorded for 100 critical
executions and message delay was set between 1 to 9 and
critical section execution time from 1 to 9 as chosen by the
random selector.

More Insight in the Simulation engine
Simulation engine uses three random generators one for
selecting node ids, the second one is used to generated state
delay for REQUEST or PRIVILEGE type of message. The
last one is used to generate the state delay for which a node
executes critical section again which is set between 1 to 9.
The experiments starts with initializing all the nodes and
giving the PRIVILEGE to one of the node, note the token is
idle initially. Next a random selector picks number of
requestor id’s depending on the load condition this would
typically be state 0 in the simulation and the state delay will be
calculated between 1-9 units and set as message arrival time
for each of the receivers in state queue. Next cycle of selecting
the requestors will be any of the states while running the
program; it may over with lap any of the message delivery
state from the queue. If the ids selected by the random selector
had already send request in the previous one and haven’t got
chance to execute their critical section then those nodes are
ignored. When maximum allowed critical sections have been
requested, then the random selector for selecting ids is
stopped. The simulation engine eventually halts when each of
the requesting node gets chance to execute critical section.
Each of the nodes receiving the PRIVILEGE is allowed to
keep the token busy for 1-9 states again selected by the third
type of random generator.

Results for Suzuki Kasami’s Algorithm:

For Suzuki Kasami’s algorithms under light weight, the
number of messages per critical section was almost N all the
time, as it was too rear case that the same node having the
token idle (not executing critical section) was requesting so the
number of messages per critical section were always N*100 .
Only at half load or full load, the number of messages were
(N*100)-N, because there was at-least one node which had
token idle and was chosen by the random selector for
executing critical section. After any node leaves critical
section only one message is required for the next requesting
node to enter critical section that is the PRIVILEGE message.
This reduces the synchronization delay for this algorithm and
therefore increases the throughput of the system. However the
synchronization delay and throughput were not measured as
they averaged to half of the limits set as bounds for random
generator when considering the number of messages
exchanged in the system.

Results for Raymond’s Tree Algorithm:

The experiments were carried out on four different types of
tree topologies, a straight line, a star or a tree with depth one, a
tree with depth two with approx 30% nodes at level one and
approx 70% at the next level, and the last with again 2 depth
approx 70% nodes at level one and 30% of nodes at level 2.
In the graphs the focus of observation should be mainly on
approx. 100 nodes line as the number of executions completed
in the setup is 100.

Raymond’s Straight line:

For a straight line if number of critical executions is equal to
the number of nodes in the chain (in this case approx 100
nodes), then under full-load the maximum number of messages
required per critical section entry is 2. The maximum
variation of number of messages in noted under half-load with
approx 100 nodes requesting 100 critical section this because

0

2000

4000

6000

8000

10000

12000

1 Process 1/2 load Full Load

M
es

sa
g

es

Load

Suzuki Kasami Algorithm

31 Nodes

51 Nodes

101 Nodes

3

of the nature of the random selector and simulation engine
which may allow fewer number of nodes for requesting critical
sections at later states (some of the selected nodes already may
have sent request previously), and nodes allowed may be either
side of the chain. Hence the token traversal path along the
chain is not predictable in this condition.

Raymonds Star or a tree with depth one:

Maximum diameter for this topology is 2. Here again focusing
on load conditions for approx 100 nodes as number of critcal
section is 100 in setup the number of messsge required per
critical section execution is approx 4 under full load. The
number of messages

exchanged for approx 30 and 50 nodes cannot be predicted as
they are not proportional to the number of executions used as
parameter while taking readings and also due to the nature of
the random selector and simulation engine.

Raymond’s 2 Depth Tree (30%-70%):

Again focusing on full load conditions for approx 100 nodes as
number of critcal section is 100 in setup the number of
message required per critical section execution is approx 4.

Raymond’s 2 depth tree (70%-30%):

Focusing on full load conditions for approx 100 nodes as
number of critcal section is 100 in setup the number of
messsge required per critical section execution is approx 4.

Conclusion:

A experimental simulation of the Suzuki Kasami’ and
Raymond’s distributed mutual exclusion was made and
verified. The results obtained were pretty much a function of
the chosen fixed parameters, though they highlighted and
verified all the important aspects of the algorithms. Ideally
number of messages exchanged in the Suzuki Kasami’s
Algorithm is greater than that of Raymond, however the
synchronization delay and system throughput would be lower
at the cost of using a denser broadcast interconnection network
among nodes. In Raymond’s Algorithm the worst case number
of messages exchanged per critical section is when light load
and when the topology is like a chain, which increases the
diameter of the network used. This kind of network increases
number of messages exchanged per critical section and also
increases synchronization delay. However this is improved
under full load condition. While making a making a choice
between either of the algorithms the topology and the load
condition should be taken into consideration also tolerance
factors like synchronization delay and throughput should be
taken into consideration.

Future Work:

Future work will include investigating other mutual exclusion
or similar network type problems by implementing more
accurate simulation engines for measuring performances of
those algorithms.

4

REFERENCES

[1] A tree based algorithm for distributed mutual exclusion -
Raymond – 1989

[2] Suzuki-Kasami DMX algorithm, Nov 1985

[3] Advanced Operating Systems, Mukesh Singhal chapter 6.

