

1

ABSRACT

Shavit-Francez algorithm detects termination

condition in de-centralized arbitrary networks. The

aim of this project is to analyze the message

complexity of this algorithm and further, to study

how the selection of the wave algorithm for a

particular topology impacts the overall message

complexity of the system. Starting with an

introduction to the Shavit-Francez Algorithm, I’ll

state the assumptions made for the analysis, followed

by the description of the test result obtained.

Although a brief introduction to the Termination

Detection problem and Shavit-Francez Algorithm is

provided but it is assumed that the reader has a prior

knowledge of the subject.

I. INTRODUCTION

ERMINATION detection was first brought in to

prominence in 1980 by Nissim Francez [1] and now it

is considered a classical problem in the field of

distributed systems, due to its practical and theoretical

importance [2]. As per the problem, for any distributed

computation, henceforth referred to as basic

computation, the aim is to detect when this computation

reaches a terminal configuration. By terminal

configuration we mean a configuration where, at every

process, no more steps of the algorithm are applicable

and there are no messages in transit. Such detection is

not trivial as no process has complete knowledge of the

global state of the computation

 A possible solution to this problem

would be to superimpose a control algorithm over the

underlying basic algorithm that would detect the global

terminal state of the underlying algorithm. This control

algorithm should detect termination without influencing

the computation of the basic algorithm. Dijkstra and

Scholten [3], in 1980, proposed an algorithm based on

this approach to detect the global terminal state for

diffusing or centralized basic computation. In their

approach, the control algorithm maintains a directed

computation tree rooted at the initiator. This tree is

expanded whenever a basic message is sent or a process,

not in the tree, becomes active. Messages are the leaves

of tree and every process keeps a count of its sons in the

tree. The deletion of a son of some process say p occurs

in a different process q; it is either the receipt of a son

message, or the deletion of the son process q. In order to

keep the process p informed, a control message is sent to

p when a son of p is deleted. On receipt of this control

message process p can safely decrement its son count.

When the initiator seizes to be the part of this

computation tree, the computation algorithm has

detected the terminal configuration. At this point the

initiator calls another routine called Announce which

explicitly terminates all the processes. Although

Dijkstra-Scholten algorithm satisfied all the properties

expected of a termination detection algorithm, it was

limited to centralized computations only i.e.

computations with single initiator [4]. However, in

1986, N. Shavit and N. Francez [5] generalized this

algorithm to non-diffusing or decentralized computation.

This new generalized algorithm maintains a computation

forest of which each tree is rooted at the initiator of the

basic computation. When a tree of some initiator gets

empty, instead of calling the Announce routine, it just

remains empty thereafter. If this initiator wants to

become active again, it can do so by joining the tree of

some other initiator. And in the end, the verification

that all trees have collapsed is done by running a wave

Message Complexity Analysis of Shavit-

Francez Termination Detection Algorithm.

Rizwan Iqbal Malik

Advanced Operating Systems, 2007

Computer Science Department

Kent State University

Kent, OH, 44242

rmalik2@kent.edu

T

mailto:rmalik2@kent.edu

2

algorithm. Since, one of the property of wave algorithm

requires that each decide event is preceded by an event

in each process (referred to as Dependence property),

this event, at each process, will take place if and only if

its computation tree has collapsed.

II. THE EXPERIMENT

The Shavit-Francez algorithm sends a control message

for every basic message send, after which a wave

algorithm is run and a call to the Announce routine is

made. So, theoretically the message complexity of

Shavit-Francez algorithm is M (Number of control

messages sent equal o the number of basic messages

sent) + W (number of messages generated by the wave

algorithm) + A (Number of messages generated by the

Announce routine). The algorithm although, always runs

with worst-case message complexity (one control

message for every basic message) but is considered

optimal as the overall message complexity is lower than

other similar algorithm such as Chandy-Lamport’s

snapshot algorithm. As compared to the original

Dijkstra-Scholten’s implementation, this generalized

algorithm introduces the execution of a wave algorithm.

Since different wave algorithms have different

characteristics like, in some, there is a single decide

event, while in others a decide event takes place at each

process. Further, as the function of the Announce

routine is to halt every process after global terminal state

has been detected, this function of the Announce routine

can be performed by a wave in which a decide event

takes place at every process i.e. we can make a process

halt after it has decided. So the choice of this wave

algorithm can help to decrease the message complexity

of the algorithm. In my analysis, Firstly I’ve shown that,

in my implementation, the message complexity of the

algorithm does match the theoretical claim, secondly

I’ve compared the overall message complexity of

Shavit-Francez algorithm when run with 2 different

waves and lastly, I’ve shown how the after using the

above discussed approach we can reduce the message

complexity of the algorithm.

III. THE ENVIRONMENT AND ASSUMPTIONS

The process graphs chosen for this particular analysis

were trees. The tree graphs were generated randomly.

The random tree generation process involved selecting a

random selected node as the starting point and then a

new node is added to the graph if and only if its addition

does not introduce any cycles in the tree graph. The

assumption behind this tree generation approach is to

generate truly random trees of arbitrary topology with

whatsoever no control over the Tree graphs generated.

One of the properties of the termination detection

algorithm is Non-Interference i.e. it must not influence

the computation of the basic algorithm, further this

computation can be of any distributed algorithm.

Keeping the above stated property of the control

algorithm in perspective so as not to limit the control

algorithm to some specific basic algorithm, the basic

computation was randomly generated. For the randomly

generated computation, the leaf nodes act as the

initiators. Further, every process randomly selects a

number between 1 and 5 and this number is the count of

maximum messages a process can send for the selecting

process. As the nature of the computation thus generated

is random, the assumption behind this maximum

message bound is to introduce some control over this

randomization so as to end the basic computation in

finite number of steps. In order for this computation to

progress, the sending process randomly selects a

neighbor from its set of neighbors and sends a message

to it. All processes communicate using bi-directional

channels; in this simulation the channels were simulated

by a single vector to which every process has access. For

real distributed system transit delays are fairly common,

so in the simulation in order to capture this behavior

message delays were introduced in the channel. Every

time a process sends a message, the channel simulation

engine will randomly select a number between 0 and the

current length of the channel and then inserts the

message at this randomly selected position in the

channel. As for the wave algorithm, Echo and Tree

algorithms were selected. There are 2 reasons behind

this selection. First, these 2 waves had the least message

complexity for tree networks [4].Second, while one i.e.

Echo had only one decide event the other i.e. Tree had a

decide event executed at each process. The second

reason will help us to analyze message complexity when

Announce routine is not called. In the next section the

data and the graphs results from this analysis are

presented. Each data points for the result data is

averaged over 10 runs of the algorithm for that data

point and both the waves are run on the same randomly

generated graph.

3

IV. RESULTS AND OBSERVATIONS

For my first analysis, the following data was collected:

Since the dependence property of the Wave algorithm

guarantees that each decide event is preceded by an

event at each process, so for the data generated above

tree algorithm calls the announce immediately after first

decide event takes place. From the data above, it is clear

that for every basic message generated the algorithm

generates equal number of control signals. Secondly,

since the Tree algorithm calls announce immediately

after first decide event, the message complexity of tree

algorithm in this case is equal to the number of nodes,

which is the case in the above data. The message

complexity of the Echo algorithm is equal to twice the

number of edges, can be verified from the data above.

And lastly the announce routine has the message

complexity same as the echo algorithm which is in sync

with our data. So, the data above clearly verifies the

theoretical message complexity claim of the Shavit-

Francez’s algorithm. Following graph build from the

data shown above will help us with our next analysis:

From the graph, which grows linearly for both

algorithms, it can be interpreted that, the termination

detection algorithm run with tree wave generates less

messages than with Echo wave. And this difference is

more and more pronounced as the number of nodes of

the process graph is increased. It can be safely

concluded that the choice of tree wave above echo wave

can lead us to a termination detection algorithm with

better message complexity.

 For my last analysis, using

the approach discussed in the experiment section i.e. for

tree algorithm, where a decide event takes place at each

node, the announce routine is not called instead every

process halts after it decides. The data collected and the

resultant graph are shown below:-

The above graph, which shows a linear growth for all,

shows the comparison between the message

complexities of three different variations of Termination

detection algorithm. First variation is when the

algorithm is run with Echo algorithm denoted by black

line, second variation, denoted by green line on the

graph, is when the algorithm is run with Tree wave

which calls announce immediately after first decide

event. In last variation, shown by the yellow line on

graph, exhibits the results when the termination

detection algorithm runs a Tree wave; the wave in which

every process halts after the local decision, no announce

routine is called in this variation. For tree based process

graphs we can further reduce the message complexity of

the algorithm as is clearly evident from the graph.

Further, as the number of nodes becomes large this

reduction becomes more and more pronounced.

4

V. CONCLUSION AND FUTURE WORK

From the data analyzed in the previous section, it is

already proved that the theoretical claim for message

complexity of the Shavit-Francez algorithm is justified.

Further, it was also concluded that the choice of a

particular wave can reduce the overall message

complexity of the algorithm and using the dependence

property of the wave algorithm this reduction can be

increased. However considering the fact that the Shavit-

Francez algorithm can work on arbitrary graphs, our

conclusion is more limited to tree topologies. A possible

next step would be to extend this analysis to cover more

topologies.

VI. REFERENCES

[1] Nissim Francez “Distributed Termination” 1980.

[2] Jerszy Brzezinski, Jean-Michel H´elary and Michel Raynal

“Distributed Termination Detection: General Model and

Algorithms” 1993.

[3] Edsger W. Dijkstra, C. S. Scholten “Termination Detection for

Diffusing Computations” 1980.

[4] Gerard Tel “Introduction to Distributed Algorithms”, Cambridge

University Press, 1st edition, 1994.

[5] Nir Shavit, Nissim Francez “A new approach to detection of

locally indicative stability” 1986.

[6] Class Notes by Prof. Mikhail Nesterenko.

