

Study and Analysis of Snapshot algorithms (Chandy Mishra

snapshot algorithm, Ho-Ramammorthy’s 2 phase deadlock

detection algorithm)

Amit Mali

Department Of Computer Science

Kent State University, Kent

amali@kent.edu

Abstract: In this paper we are

going to study two snapshot

algorithms, namely Chandy-

Mishra Snapshot algorithm and

Ho-Ramammorthy 2-phase

deadlock detection algorithm. The

paper is based on the practical

implementation of the algorithms

and comparison is made according

the experiment results. These

algorithms are implemented on

java platform. The message

complexity and time complexity

are used to measure and compare

the performance of the algorithms.

In section III of the paper we will

analyze the Chandy-Mishra

snapshot algorithm. Section IV

presents analysis of the Ho-

Ramammorthy 2-phase deadlock

detection algorithm. Section V

talks about the implementation

details in brief.In section VI the

comparison of the performance of

two algorithms is discussed. To

conclude the paper we present the

result of the comparison and

suggest improvements over the

implementation on a large scale

distributed systems.

I. Introduction: In the introduction

we will talk about some basic

definitions related to the algorithms

which will enable better

understanding of the algorithms and

the implementation.

Snapshot: Snapshot of an algorithm

returns the state of the system and

message queue. It basically returns a

status message giving details about

the current state of individual nodes

in the system graph.

2-Phase snapshot: This term is used

on Ho-Ramammorthy’s 2 phase

deadlock detection algorithm. The

first phase is essentially same as a

snapshot, in the second phase it

reiterates through the process tables

to ensure no false deadlocks are

detected.

Snapshot and deadlock detection

algorithms are not the core

algorithms in regard to the level on

which they operate. These

algorithms operate on top of the

basic algorithm adopted by the

system. In this particular paper and

the implementation of the

algorithms the basic algorithm for

the system is a flooding algorithm.

The rules followed in the flooding

algorithm can be listed as follows.

1. Each process forwards a message

at least once.

2. Each process receives at least one

message.

3. When above two conditions are

satisfied algorithm terminates.

Various data points are inserted in

the implementation of the

algorithms to keep track on the

number of messages and the time

taken till that particular execution

point. This data is collected over

several runs and performance

comparisons are presented based on

the readings.

III. Analysis of Chandy-Mishra

snapshot algorithm:

The data for measuring the message

and time complexity was gathered

over 30 runs of the implementation.

The average of all the collected

values is used to plot the comparison

graphs. The data is shown in Table

3.1.

Processes Messages Time

25 360 1180

20 240 1080

15 110 894

10 72 594

5 38 318

 Table 3.1

 Graph 3.1

 Processes Vs Messages

Graph 1.1 shows the exponential

increase in the number of messages

passes in the system as the number

of processes increase.

 Graph 3.2

 Processes Vs Time

Graph 3.2 shows the increase in

the time taken by the algorithm as

the number of processes increase.

Chandy Mishra Snapshot

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

Number Of Processes

N
u

m
b

e
r

o
f

M
e

s
s

a
g

e
s

Series1

Chandy Mishra Snapshot

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

Number of Processes

T
o

ta
l

T
im

e

Series1

Interesting observations are made

after number of processes is more

than 15. The degree of increase in

the time is reduced to some extent.

Section IV. Analysis of Ho-

Ramammorthy’s 2-phase deadlock

detection:

The used data to analyze the

behavior of the algorithm is

presented in Table 4.1

Processes Messages Time

25 56 93

20 36 80

15 32 75

10 18 68

5 11 60

 Table 4.1

 Graph 4.1

 Processes Vs Messages

Graph 4.1 shows the time

complexity of Ho-Ramammorthy’s

algorithm. Graph depicts a normal

behavior. It shows gradual increase

in number of messages as the

number of processes increase.

 Graph 4.2

 Processes Vs Time

Graph 4.2 shows time complexity

of Ho-Ramammorthy’s 2-phase

snapshot algorithm. Graph depicts

normal behavior, gradual increase

in time taken as the number of

processes increase.

Section V. comparing both the

algorithms on calculated Time and

message complexity:

Message complexity:

As we have calculated the Time

and Message complexity of the

algorithms we can compare the

performance of the algorithms.

Ho Ramammorthy 2 Phase Snapshot

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Number of Processes

N
u

m
b

e
r

O
f

M
e

s
s

a
g

e
s

Messages

Ho-Ramammorthy 2 Pahse Snapshot

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Number of Processes

T
o

ta
l

T
im

e

Time

 Graph 5.1

 Message complexity

Graph 5.1 depicts the performance

difference in context of Message

complexity. Ho-Ramammorthy’s

2-phase deadlock detection

algorithm has better message

complexity than Chandy-Mishra

snapshot algorithm.

Time complexity:

 Graph 5.2

 Time Complexity

As observed in Graph 5.2 Time

complexity of Chandy-Mishra’s

snapshot algorithm is better than

Ho-Ramammorthy’s 2-phase

deadlock detection.

VI. Implementation details:

The algorithm implementations are

on Java platform. The

implementation can be divided

into following parts.

1. Main simulation engine

2. Message forwarding and

Queue implementation

modules.

We will briefly describe the

simulation engine for both the

algorithms here. Simulation engine

simulates the topology as a graph.

It is responsible for taking

CM Vs HR2 Message Complexity

0

50

100

150

200

250

300

350

400

1 2 3 4 5

Ho Ramammorthy

Chandy Mishra

CM Vs HR2 Time Complexity

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

Chandy Mishra

Ho Ramammorthy

snapshots (Chandy Mishra) and

detects deadlocks (Ho-

Ramammorthy). Simulation engine

implements the message

forwarding and false deadlock

detection methods.

VII. Conclusion:

As seen in the performance

comparison graphs of both the

algorithms following conclusions

can be listed.

1. Message Complexity of Ho-

Ramammorthy 2 phase snapshot is

better than Chandy Mishra

snapshot algorithm.

2. Time complexity of Ho-

Ramammorthy 2 phase deadlock

detection is better than Chandy

Mishra snapshot algorithm.

3. Possibility of false deadlock

detection in the implementation of

Ho-Ramammorthy’s 2-phase

deadlock detection remains.

4. Algorithm implementations

need to be tested in real distributed

systems.

References:
• Distributed Deadlock Detection-

K Mani Chandy and Jaydev

Mishra.

• CHANDY, K.M., AND MISRA,

J. A distributed algorithm for

detecting resource deadlocks in

distributed systems. In Proc. A

CM SIGA CT-SIGOPS Syrup.

Principles of Distributed

Computing (Ottawa, Canada,

August 18-20, 1982), ACM, New

York, 1982, pp. 157-164.

• LAMPORT, L. Time, clocks, and

the ordering of events in a
distributed system. Commun.

ACM 21, 7 (July 1978), 558-565.
• CHANDY, K.M., AND MISRA,

J. A distributed algorithm for

detecting resource deadlocks in

 distributed systems. In Proc A

 CM SIGA CT- SIGOPS Syrup.

 Principles of Distributed

 Computing (Ottawa, Canada,

 August 18-20, 1982), ACM, New

 York, 1982, pp. 157-164.

