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Abstract—The message complexity of two lock-based 

distributed mutual exclusion algorithms are compared in 
simulation.  The number of messages per critical section 
invocation is measured in a simulated system as a function of the 
number of processes N and as a function of the critical section 
contention load L.  Both algorithms perform as expected, with 
Ricart and Agrawala’s algorithm exhibiting 2*(N-1) behavior, 
and Maekawa’s algorithm showing a NK ∗ dependence, 
where K is a weak function of load L. 
 

Index Terms—Distributed Algorithms, Mutual Exclusion, 
Message Passing Distributed Systems 
 

I. INTRODUCTION 

WO basic approaches are used for achieving mutual 
exclusion in distributed systems: locks and tokens. 

Lamport presented the first lock-based solution, alongside his 
introduction of partially ordered events with logical clocks [1]. 
Lamport’s mutual exclusion algorithm applies to fully 
connected networks with in-order deliver of messages.  It has a 
message complexity of 3*(N-1), where N is the number of 
processes. 

Other authors have sought to improve upon the message 
complexity. Ricart and Agrawala presented an algorithm [2] 
that they argue has a maximum message complexity of 
2*(N+1). They achieve the reduction by reducing the number 
of messages exchanged between a requestor and another 
process. Rather than sending a REPLY immediately after 
receiving a REQUEST, as in Lamport’s algorithm, a process 
will only do so when it ready to grant its critical section lock to 
the requestor. This selective use of REPLY eliminates the need 
for the RELEASE message. 

Instead of reducing the number of messages per process 
pair, Maekawa reduces the number of processes that must be 
contacted in order to assure mutual exclusion [3]. Each 
process possesses a set of neighbors, often referred to as its 
quorum. Quora have the following properties: The quora of 
any two processes in the system have a non-zero intersection, 
and a process belongs to its own quorum. A process will only 
grant its critical section lock to one member of its quorum at a 
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time. Consequently, if a process succeeds in acquiring locks 
from its entire quorum, it has guaranteed mutual exclusion for 
the entire system. 

This reduces the message complexity to K*Q, where K is 
the average number of messages exchanged between a pair of 
processes, and Q is the quorum size. Maekawa argues that the 
optimal size for Q approaches N , when quora are be 
configured so that the size of the intersection set between any 
two processes is one. If all locks are available when a process 
makes its request, then K=3 (REQUEST, GRANT, 
RELEASE). If a lock is not currently available, then one each 
of up to three additional messages may be employed (FAIL, 
INQUIRE, YIELD). Sanders provides details on the proper 
used of FAIL, INQUIRE, and YIELD [4] under some 
conditions not discussed by Maekawa. Therefore, Kmax = 6. K 
will tend to increase as the load (number of processes 
simultaneously contending for the critical section) increases. 

The remainder of this paper is organized as follows: Section 
II presents the experimental hypotheses. Section III describes 
the system model and simulator uses for these experiments. 
Section IV presents and discusses the results of the 
experiments. Section V concludes the paper with some 
suggestions for future work. 

II. HYPOTHESES 

Message complexity M for lock-based mutual exclusion 
algorithms is expected to vary with N and with load L. The 
goal of this work is to verify, illustrate, and compare the 
message complexity of the Ricart-Agrawala and Maekawa 
algorithms. The following hypotheses formally state the 
expected outcomes: 
 
H1. For a fixed load, M in Ricart-Agrawala varies linearly 

with N. 
H2. For a fixed load, M in Maekawa varies according to 

N . 
H3. For a fixed N, M in Ricart-Agrawala does not vary with L. 
H4. For a fixed N, M in Maekawa is equal to K*Q, where 

K gradually increases, from K=3 at minimal load to K=6 
at maximal load. 

III. SYSTEM MODELLING AND SIMULATION 

The algorithms in this study naturally adhere to the message 
passing model of distributed systems. Interleaving execution is 
assumed. Messages may contain sequence numbers, to 
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implement a logical clock scheme. 

A. Modeling a Distributed System 
A simulator was implemented in Java to compare these two 

algorithms. The simulator employs generic class structures to 
represent a Process, a Message, and a Channel. The topology 
of a network is expressed by providing each Process with a list 
of its neighboring Processes. The list of neighbors was chosen 
rather than a global connectivity matrix because it more 
closely models the algorithms being considered.  An abstract 
Process can Send and Receive messages but has no program to 
drive these actions. 

To implement a Process for a specific algorithm, one 
defines the Send and Receive functions, message contents, 
plus any internal actions and state variables. The Channel may 
be configured to deliver either in-order or out-of-order 
messages.  A complete system is an array of Processes which 
are assigned their neighbor lists. A Ricart-Agrawala Process 
has a complete list of all N-1 other processes. A Maekawa 
Process has a neighbor list containing its unique quorum. 

B. Constructing Quora 
Maekawa bases his quorum on finite projective planes but 

does not offer an algorithm for computing quorum 
membership. This study uses the billiard quorum construction 
algorithm advanced by Agrawal, E�ecio�lu, and Abbadi [5]. In 
their system, 12 += NQ , so while N dependence is 

maintained, quorum size is increased by a constant factor 2 . 

C. Implementing Message Channels 
For historical reasons, the simulator originally implemented 

the many process-to-process channels as a single global queue 
of messages. Messages were delivered according to a global 
FIFO protocol. This proved to be unacceptable for this study. 
Ricart-Agrawala supports out-of-order delivery. Maekawa, on 
the other hand, requires that messages in the local channel 
between a pair of processes be delivered in order, but 
messages in different local channels can be delivered 
concurrently; that is, there is no causal ordering between 
messages in different channels. To generate randomized 
computations, the simulator must not insert any ordering that is 
not required by the algorithms themselves. 

Rather than implementing the full N*Q individual channels 
required by Maekawa, their behavior was emulated with only 
N queues. The Channel module has N queues, categorizing 
messages according to sender. Ordering is determined during 
the Send operation. If delivery may be out-of-order, then Send 
inserts a message into its sender’s queue in a random position. 
If delivery must be in order, then Send searches that queue for 
the most recently added message addressed to the given 
receiver, and then inserts the new message somewhere 
between this position and the tail of the queue: 

To emulate deliver of an arbitrary message, Receive selects 
a random sender queue. If that queue is empty, it tries again. It 
then removes the message at the front of the queue. Note that 
randomization of each queue’s order was already established 

during the Send phase. 

D. Roles of the Simulator and Execution Cycle 
The simulator has several roles. The first role below is 

algorithm-specific. The other roles are generic: 
• System Constructor – makes an set of N algorithm-

specific processes, then assigns neighbors 
• Critical Section Manager - commands a process to 

request the CS or to exit the CS. 
• Load Manager – selects enough random processes to 

maintain the contention load at the target level 
• Accountant – counts messages and CS cycles 
When the simulator is invoked, the user specifies parameter 

values for algorithm choice, number of processes N, load L, 
and the maximum number of CS cycles C. The simulator first 
acts as System Constructor. The Load Manager then selects L 
processes, which the Critical Section Manager instructs to 
request the CS. All of these initial requests are timestamped 
with sequence number 0. 

Note that a Process acts either when it receives a command 
from the Critical Section Manager or when it Receives a 
Message from the Channel. The System Constructor triggers L 
processes to broadcast REQUEST messages, which will all be 
queued in the Channel.   

The simulator now enters the execution loop. Each cycle, 
there is a fixed probability (default = 50%) that a process 

queue := Queue[sender_id]; 
index := queue.length; 
while (index >= 0 ^ 

   queue[position].recvr_id != new_msg.recvr_id) 
 begin 
  index := index – 1; 
 end; 
{insert new_msg in random position between tail and 

    index} 
 

 Fig. 1. Channel Send function 

messageCount := csCount := 0; 
initializeCSreq(N, L); 
 
while (numCSexits < maxCSexits ^ Channel.notEmpty) 

  begin 
 if (inCS ^ ProbabilityOfExiting) then begin 
  csCount++; 

   CSExit;  /* tell process to exit CS */ 
  CSReq; /* select a random proc. to request CS */ 
 end; 
 if (Channel.notEmpty) then begin 
  Message m := Channel.remove; 
  messageCount++; 
  Deliver(m); 
 end; 
end; 
 

Fig. 2.   Simulator Execution Cycle 
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already in the CS will exit the CS. If exit is selected, the CS 
Manager directs the exit, and the Load Manager selects 
another process to replace this one. The simulator then selects 
a random message to deliver. This loop is repeated until the 
Accountant notes that we have reached the maximum number 
of CS exits and the Channel queues are empty. 

 

IV. EXPERIMENTAL RESULTS 

 
Two series of simulations were run, with ten trials per test 

condition per algorithm. One run includes 100 CS cycles. The 
first series varied N while using a minimum load of one 
process in CS contention. The billiard quorum algorithm only 
produces automatic results when Q is odd. This quantizes 
values for N. Table 1 shows the first four values of Q and N 
(excluding Q = 1). These values span one order of magnitude 
for N and were the values used for the simulations. 

 
 Q N 
 3 4 
 5 12 
 7 24 
 9 40 

 
Table 1. Billiard Quorum Size and Corresponding 
Maximum System Size 
  
The second series varied load L in a 40-process system. 

Three loads were used: minimum (one process), half load, and 
full load (all processes).  Again, there were ten runs with 100 
CS cycles per run. 

Fig. 3 shows the results from the first series: message 
complexity vs. Number of processes N. The message 
complexity for the Ricart-Agrawala algorithm matched 
expectations exactly: M = 2*(N-1) with zero variance.  

The message complexity for the Maekawa algorithm 
exhibits a trend that very closely resembles the N behavior 
that was predicted. The variance is extremely small. The actual 
quorum formula is 12 += NQ , so for small values of N, 

we expect some divergence from the N trend.  A fairer 
measure might be to compare message complexity to actual Q, 
to see if under light load conditions, K is a constant. 
  

Maekawa (vary N, L = 1) 
N 4 12 24 40 
Avg Msgs/CS 9.79 16.03 22.02 27.89 
Q 3 5 7 9 
K 3.26 3.21 3.15 3.10 

Table 2.   Ratio K between Message Complexity and 
Quorum Size (light load) 
 

The data show that K is not constant but relatively stable 
and approaches the predicted value of 3 as N increases. 

Fig. 4 shows the results from the second series: Message 
complexity vs. Load.  The results for the Ricart-Agrawala 
algorithm are not shown because they were exactly as 
predicted and not deemed interesting: for N=40, M=78 for all 
load levels. The Maekawa algorithm results are qualitatively 
similar to what was expected (a small increase), but 
quantitatively different. 
 

Maekawa (vary L, N = 40) 
N 1 20 40 
Avg Msgs/CS 27.89 35.71 36.00 
Q 9 9 9 
K 3.10 3.97 4.00 

Table 3.  Ratio K between Message Complexity and Load 
Level (N = 40) 
 

The prediction was for K to range from a minimum of 3 to a 
maximum of 6.  The measured range was from 3.10 to 4.00. 

The difference between the predicted results and the 
measured results are easily explained if the simulation logs are 
studied.  Even when only one process is in contention for the 
CS, some FAIL, INQUIRE, and YIELD messages may be 
sent, increasing K above the baseline of 3.  Suppose a process 
exits the CS and broadcasts RELEASE.  Due to the 
interleaving execution semantic and concurrency between 
different processes, some processes will certainly receive the 
RELEASE before others.  If one of the early recipients is the 
next contender for the CS and broadcasts its REQUEST, a 
third process might receive this new REQUEST before 
receiving the first process’ RELEASE.  This third process will 
reply to the second REQUEST with FAIL. 

It is also easy to see that with only ten randomly generated 
simulation computations, it is unlikely that we will generate 
worst-case computations in which K = 6. In fact, it is not clear 
that there exists a computation in which all processes issue all 
six message types for each CS cycle. 

In summary, the Ricart-Agrawala algorithm performed both 
qualitatively and quantitatively as expected.  The Maekawa 
algorithm performed qualitatively and very nearly 
quantitatively as expected. 

 

V. FUTURE STUDIES 

The results from these experiments show that even simple 
experiments can have unexpected results.  I did not expect to 
see FAIL, YIELD, or INQUIRE messages when only one 
process at a time contended for the critical section.  An 
interesting follow-up study would be to count the frequency at 
which these messages occur under different conditions. 

This experiment used only the optimal quantized values of 
N from the billiard quorum algorithm.  Billard quorums can be 
adjusted for use with other values of N by doing the following: 
generate quora for the quantized value of N greater than the 
desired N. Then delete all references to values greater than the 
desired N.  Another experiment could measure message 
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complexity in Maekawa for every integer value of N within a 
range, to see if the graph of message complexity vs. N forms a 
staircase function, with steps at the known quantization values 
of N. 

Despite the simplicity and predictability of the Ricart-
Agrawala algorithm, there are opportunities for further study 
of this algorithm as well.  In their paper, they describe several 
situations in which a more specialized network could achieve 
an lower message complexity.  For example, if a REPLY is not 
received within a certain time limit, then the lock is assumed to 
be granted.  
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Fig. 3.  Message Complexity vs. Number of Processes (light load) 
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Fig. 4.  Message Complexity vs. Load Level (40 processes) 


