
 1

Abstract—The message complexity of two lock-based

distributed mutual exclusion algorithms are compared in
simulation. The number of messages per critical section
invocation is measured in a simulated system as a function of the
number of processes N and as a function of the critical section
contention load L. Both algorithms perform as expected, with
Ricart and Agrawala’s algorithm exhibiting 2*(N-1) behavior,
and Maekawa’s algorithm showing a NK ∗ dependence,
where K is a weak function of load L.

Index Terms—Distributed Algorithms, Mutual Exclusion,
Message Passing Distributed Systems

I. INTRODUCTION

WO basic approaches are used for achieving mutual
exclusion in distributed systems: locks and tokens.

Lamport presented the first lock-based solution, alongside his
introduction of partially ordered events with logical clocks [1].
Lamport’s mutual exclusion algorithm applies to fully
connected networks with in-order deliver of messages. It has a
message complexity of 3*(N-1), where N is the number of
processes.

Other authors have sought to improve upon the message
complexity. Ricart and Agrawala presented an algorithm [2]
that they argue has a maximum message complexity of
2*(N+1). They achieve the reduction by reducing the number
of messages exchanged between a requestor and another
process. Rather than sending a REPLY immediately after
receiving a REQUEST, as in Lamport’s algorithm, a process
will only do so when it ready to grant its critical section lock to
the requestor. This selective use of REPLY eliminates the need
for the RELEASE message.

Instead of reducing the number of messages per process
pair, Maekawa reduces the number of processes that must be
contacted in order to assure mutual exclusion [3]. Each
process possesses a set of neighbors, often referred to as its
quorum. Quora have the following properties: The quora of
any two processes in the system have a non-zero intersection,
and a process belongs to its own quorum. A process will only
grant its critical section lock to one member of its quorum at a

Manuscript received December 9, 2007.
Victor E. Lee is a Ph.D. student at the Department of Computer Science,

Kent State University, Kent, OH 44242 USA (e-mail: vlee@cs.kent.edu).

time. Consequently, if a process succeeds in acquiring locks
from its entire quorum, it has guaranteed mutual exclusion for
the entire system.

This reduces the message complexity to K*Q, where K is
the average number of messages exchanged between a pair of
processes, and Q is the quorum size. Maekawa argues that the
optimal size for Q approaches N , when quora are be
configured so that the size of the intersection set between any
two processes is one. If all locks are available when a process
makes its request, then K=3 (REQUEST, GRANT,
RELEASE). If a lock is not currently available, then one each
of up to three additional messages may be employed (FAIL,
INQUIRE, YIELD). Sanders provides details on the proper
used of FAIL, INQUIRE, and YIELD [4] under some
conditions not discussed by Maekawa. Therefore, Kmax = 6. K
will tend to increase as the load (number of processes
simultaneously contending for the critical section) increases.

The remainder of this paper is organized as follows: Section
II presents the experimental hypotheses. Section III describes
the system model and simulator uses for these experiments.
Section IV presents and discusses the results of the
experiments. Section V concludes the paper with some
suggestions for future work.

II. HYPOTHESES

Message complexity M for lock-based mutual exclusion
algorithms is expected to vary with N and with load L. The
goal of this work is to verify, illustrate, and compare the
message complexity of the Ricart-Agrawala and Maekawa
algorithms. The following hypotheses formally state the
expected outcomes:

H1. For a fixed load, M in Ricart-Agrawala varies linearly

with N.
H2. For a fixed load, M in Maekawa varies according to

N .
H3. For a fixed N, M in Ricart-Agrawala does not vary with L.
H4. For a fixed N, M in Maekawa is equal to K*Q, where

K gradually increases, from K=3 at minimal load to K=6
at maximal load.

III. SYSTEM MODELLING AND SIMULATION

The algorithms in this study naturally adhere to the message
passing model of distributed systems. Interleaving execution is
assumed. Messages may contain sequence numbers, to

An Experimental Comparison of Lock-based
Distributed Mutual Exclusion Algorithms

Victor E. Lee

T

 2

implement a logical clock scheme.

A. Modeling a Distributed System
A simulator was implemented in Java to compare these two

algorithms. The simulator employs generic class structures to
represent a Process, a Message, and a Channel. The topology
of a network is expressed by providing each Process with a list
of its neighboring Processes. The list of neighbors was chosen
rather than a global connectivity matrix because it more
closely models the algorithms being considered. An abstract
Process can Send and Receive messages but has no program to
drive these actions.

To implement a Process for a specific algorithm, one
defines the Send and Receive functions, message contents,
plus any internal actions and state variables. The Channel may
be configured to deliver either in-order or out-of-order
messages. A complete system is an array of Processes which
are assigned their neighbor lists. A Ricart-Agrawala Process
has a complete list of all N-1 other processes. A Maekawa
Process has a neighbor list containing its unique quorum.

B. Constructing Quora
Maekawa bases his quorum on finite projective planes but

does not offer an algorithm for computing quorum
membership. This study uses the billiard quorum construction
algorithm advanced by Agrawal, E�ecio�lu, and Abbadi [5]. In
their system, 12 += NQ , so while N dependence is

maintained, quorum size is increased by a constant factor 2 .

C. Implementing Message Channels
For historical reasons, the simulator originally implemented

the many process-to-process channels as a single global queue
of messages. Messages were delivered according to a global
FIFO protocol. This proved to be unacceptable for this study.
Ricart-Agrawala supports out-of-order delivery. Maekawa, on
the other hand, requires that messages in the local channel
between a pair of processes be delivered in order, but
messages in different local channels can be delivered
concurrently; that is, there is no causal ordering between
messages in different channels. To generate randomized
computations, the simulator must not insert any ordering that is
not required by the algorithms themselves.

Rather than implementing the full N*Q individual channels
required by Maekawa, their behavior was emulated with only
N queues. The Channel module has N queues, categorizing
messages according to sender. Ordering is determined during
the Send operation. If delivery may be out-of-order, then Send
inserts a message into its sender’s queue in a random position.
If delivery must be in order, then Send searches that queue for
the most recently added message addressed to the given
receiver, and then inserts the new message somewhere
between this position and the tail of the queue:

To emulate deliver of an arbitrary message, Receive selects
a random sender queue. If that queue is empty, it tries again. It
then removes the message at the front of the queue. Note that
randomization of each queue’s order was already established

during the Send phase.

D. Roles of the Simulator and Execution Cycle
The simulator has several roles. The first role below is

algorithm-specific. The other roles are generic:
• System Constructor – makes an set of N algorithm-

specific processes, then assigns neighbors
• Critical Section Manager - commands a process to

request the CS or to exit the CS.
• Load Manager – selects enough random processes to

maintain the contention load at the target level
• Accountant – counts messages and CS cycles
When the simulator is invoked, the user specifies parameter

values for algorithm choice, number of processes N, load L,
and the maximum number of CS cycles C. The simulator first
acts as System Constructor. The Load Manager then selects L
processes, which the Critical Section Manager instructs to
request the CS. All of these initial requests are timestamped
with sequence number 0.

Note that a Process acts either when it receives a command
from the Critical Section Manager or when it Receives a
Message from the Channel. The System Constructor triggers L
processes to broadcast REQUEST messages, which will all be
queued in the Channel.

The simulator now enters the execution loop. Each cycle,
there is a fixed probability (default = 50%) that a process

queue := Queue[sender_id];
index := queue.length;
while (index >= 0 ^

 queue[position].recvr_id != new_msg.recvr_id)
 begin
 index := index – 1;
 end;
{insert new_msg in random position between tail and

 index}

 Fig. 1. Channel Send function

messageCount := csCount := 0;
initializeCSreq(N, L);

while (numCSexits < maxCSexits ^ Channel.notEmpty)

 begin
 if (inCS ^ ProbabilityOfExiting) then begin
 csCount++;

 CSExit; /* tell process to exit CS */
 CSReq; /* select a random proc. to request CS */
 end;
 if (Channel.notEmpty) then begin
 Message m := Channel.remove;
 messageCount++;
 Deliver(m);
 end;
end;

Fig. 2. Simulator Execution Cycle

 3

already in the CS will exit the CS. If exit is selected, the CS
Manager directs the exit, and the Load Manager selects
another process to replace this one. The simulator then selects
a random message to deliver. This loop is repeated until the
Accountant notes that we have reached the maximum number
of CS exits and the Channel queues are empty.

IV. EXPERIMENTAL RESULTS

Two series of simulations were run, with ten trials per test

condition per algorithm. One run includes 100 CS cycles. The
first series varied N while using a minimum load of one
process in CS contention. The billiard quorum algorithm only
produces automatic results when Q is odd. This quantizes
values for N. Table 1 shows the first four values of Q and N
(excluding Q = 1). These values span one order of magnitude
for N and were the values used for the simulations.

 Q N
 3 4
 5 12
 7 24
 9 40

Table 1. Billiard Quorum Size and Corresponding
Maximum System Size

The second series varied load L in a 40-process system.

Three loads were used: minimum (one process), half load, and
full load (all processes). Again, there were ten runs with 100
CS cycles per run.

Fig. 3 shows the results from the first series: message
complexity vs. Number of processes N. The message
complexity for the Ricart-Agrawala algorithm matched
expectations exactly: M = 2*(N-1) with zero variance.

The message complexity for the Maekawa algorithm
exhibits a trend that very closely resembles the N behavior
that was predicted. The variance is extremely small. The actual
quorum formula is 12 += NQ , so for small values of N,

we expect some divergence from the N trend. A fairer
measure might be to compare message complexity to actual Q,
to see if under light load conditions, K is a constant.

Maekawa (vary N, L = 1)
N 4 12 24 40
Avg Msgs/CS 9.79 16.03 22.02 27.89
Q 3 5 7 9
K 3.26 3.21 3.15 3.10

Table 2. Ratio K between Message Complexity and
Quorum Size (light load)

The data show that K is not constant but relatively stable
and approaches the predicted value of 3 as N increases.

Fig. 4 shows the results from the second series: Message
complexity vs. Load. The results for the Ricart-Agrawala
algorithm are not shown because they were exactly as
predicted and not deemed interesting: for N=40, M=78 for all
load levels. The Maekawa algorithm results are qualitatively
similar to what was expected (a small increase), but
quantitatively different.

Maekawa (vary L, N = 40)
N 1 20 40
Avg Msgs/CS 27.89 35.71 36.00
Q 9 9 9
K 3.10 3.97 4.00

Table 3. Ratio K between Message Complexity and Load
Level (N = 40)

The prediction was for K to range from a minimum of 3 to a
maximum of 6. The measured range was from 3.10 to 4.00.

The difference between the predicted results and the
measured results are easily explained if the simulation logs are
studied. Even when only one process is in contention for the
CS, some FAIL, INQUIRE, and YIELD messages may be
sent, increasing K above the baseline of 3. Suppose a process
exits the CS and broadcasts RELEASE. Due to the
interleaving execution semantic and concurrency between
different processes, some processes will certainly receive the
RELEASE before others. If one of the early recipients is the
next contender for the CS and broadcasts its REQUEST, a
third process might receive this new REQUEST before
receiving the first process’ RELEASE. This third process will
reply to the second REQUEST with FAIL.

It is also easy to see that with only ten randomly generated
simulation computations, it is unlikely that we will generate
worst-case computations in which K = 6. In fact, it is not clear
that there exists a computation in which all processes issue all
six message types for each CS cycle.

In summary, the Ricart-Agrawala algorithm performed both
qualitatively and quantitatively as expected. The Maekawa
algorithm performed qualitatively and very nearly
quantitatively as expected.

V. FUTURE STUDIES

The results from these experiments show that even simple
experiments can have unexpected results. I did not expect to
see FAIL, YIELD, or INQUIRE messages when only one
process at a time contended for the critical section. An
interesting follow-up study would be to count the frequency at
which these messages occur under different conditions.

This experiment used only the optimal quantized values of
N from the billiard quorum algorithm. Billard quorums can be
adjusted for use with other values of N by doing the following:
generate quora for the quantized value of N greater than the
desired N. Then delete all references to values greater than the
desired N. Another experiment could measure message

 4

complexity in Maekawa for every integer value of N within a
range, to see if the graph of message complexity vs. N forms a
staircase function, with steps at the known quantization values
of N.

Despite the simplicity and predictability of the Ricart-
Agrawala algorithm, there are opportunities for further study
of this algorithm as well. In their paper, they describe several
situations in which a more specialized network could achieve
an lower message complexity. For example, if a REPLY is not
received within a certain time limit, then the lock is assumed to
be granted.

REFERENCES
[1] L. Lamport, “Time, clocks, and the ordering of events in a

distributed system,” in Comm. ACM 21, 7 (July 1978), pp. 558-
564.

[2] G. Ricart and A.K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Comm. ACM 24, 1 (January,
1981), pp. 9-17.

[3] M. Maekawa, “A n algorithm for mutual exclusion in
decentralized systems,” ACM Trans. on Computer Systems 3
(1985), pp. 145-159.

[4] B.A. Sanders, “The information structure of distributed mutual
exclusion algorithms,” ACM Trans. on Computer Systems 5, 3
(1987), pp. 284-299.

[5] D. Agrawal, Ö E�ecui�lu, A. Abbadi, “Billiard quorums on the
grid,” Info. Proc. Letters 64 (1997), pp. 9-16.

 5

Message Complexity vs. Number of Processes (Light Load)

4

12

24

40

4

12

24

40

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45

Num. of Processes N

N
u

m
. o

f M
es

sa
ge

s
P

er
 C

S
 C

yc
le

Ricart-Agrawala

Maekawa

Fig. 3. Message Complexity vs. Number of Processes (light load)

Messages/CS vs Load, Maekawa (40 processes)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Contention Load Level

N
um

. o
f M

es
sa

ge
s

P
er

 C
S

 C
yc

le

L=1

L = 0.5N L = N

Fig. 4. Message Complexity vs. Load Level (40 processes)

