
A Performance Evaluation and Critique of Singhal
Kshemkalyanis Implementation of Vector Clocks

Manas Hardas
Department of Computer Science

Kent State University
Kent, Ohio 44240

Email: mhardas@cs.kent.edu

Abstract—In distributed systems clocks are used for syn-
chronization, ordering etc. Physical clocks which use materials
gradually get out of sync over long periods of time called ”clock
drift”. Therefore logical clocks are used instead. Lamports scalar
clocks offer a very easy implementation of logical clocks however
are not strongly consistent. Vector clocks are strongly consistent,
but their implementations have a very big overhead in message
transmission. Singhal Kshekalyani offer an implementation of
vector clocks where in the message overhead can be decreased
by transmitting only the differentials instead of the whole vector.
The objective of this work is to test their approach.

I. INTRODUCTION

In distributed systems processes often need to communicate
with each other. This is done through message passing. All
the actions of sending, receiving and processing a message
can be cumulatively labeled as an event on a process. These
events occur in some order, which gives a notion of time or
chronology of events. The notion of time in state is engraved
in interleaving semantics itself. The fact that only one process
can execute at a time in distributed system also signifies an
order. Thus in distributed systems a notion of time is very
important for tasks like synchronization of clocks and ordering
of events.

Typically a physical clock for each process seems to be
a solution but that method suffers from pitfalls like clock
drift. Therefore logical clocks are used. Logical clocks
offer a means to capture the causality or happened before
relation for two different events. The causality relation is
given by ∝ symbol and give a partial ordering of events.
It is called as partial order because it allow loops in the
causality (i.e. c∝d∝e∝c). We will see how logical clocks can
be implemented using Lamport’s scalar clocks and Vector
implementation of Singhal-Kshemkalyani (henceforth referred
to as “SK”).

II. LOGICAL CLOCKS

Every process in the distributed system is expected to
maintian a variable which stores the “logical” time for that
process. Using this time other process can synchroize them-
selves and ordering of events is possible. Ordering of events is
important to understand while comparing computations. Two
computations are said to be equivalent if they only differ by
the order of their concurrent events.

A. Lamports scalar clocks

Lamport suggested a method to maintain logical time by
keeping a clock variable and then increment it everytime
an event occurs depending upon the event. The clocks are
designed such that if ‘a’ happened before ‘b’ then ‘a’s’
timestamp will be less than ‘b’ in case of causally related
events. This is called consistencty. Strong consistency is when
the reverse, i.e. if the timestamp of a event ‘a’ is more than
event ‘b’ then ‘a’ happens after ‘b’ is also true.

The main problem with scalar clocks is that they do not
impose total order on the events. Concurrent events cannot
be ordered and therefore strong consistency can be violated.
It is not possible to determine from timestamps where one
event occured before another, i.e whether the two events were
causally related or concurrent.

B. SK’s implementation of vector clocks

To remove this inconsistency in the timestamps, vectors
clocks are introduced. In this implementaion all the processes
maintain a vector of values signifying the clocks of all
the processes. Thus now a process knows from its vector
what the exact current clock value of another process is
by just looking at it own vector. Vector clocks are strongly
consistent. However, because vector clock implementations
need to exchage the whole vector of information along with
any process it wants to communicate, it became an overhead
cost. Sending large messages containing clock values of every
clock in the system is costly as well as worthless. In the
simple implementation of vector clocks, at every state of the
computation a process sends a message with maximum size
n*n. This is a very costly method to maintain clocks.

In distributed systems tasks are often logically divided into
a number of processors with processes working on some
common task are grouped together in clusters. Most of the
communicaion occurs between these processes. Therefore its
is wasteful to send message containing whole n by n vectors
of clock values when only a few timestamps are changing.
SK though of this and designed an algorithm which only
transmits the differential when ever a process sends a new
message to another. Two new vectors are maintained at each
processes which will store the last updated and the last sent
values for clocks along with original vector clock. However,
now instead of sending the whole n by n vector, only the



updates were being sent and the remaining processes were
updatig accordingly. This saves a lot of overhead in message
sizes. SK also give the effeciency of their system in terms
of how “localized” the communication is. Meaning, if the
communication is more localized i.e. only within a select few
processes then SK technique is very efficient. The percent
effenciency is given by,

(1− log2 N + b).n
b.N

.100 (1)

where, n=number of localized processes; N=total number of
processes; b=number of bits in a sequence log2N=number of
bits needed to encode N Therefore, SK technique is only
efficient when,

n <
N.b

log2 N + b
(2)

III. EXPERIMENTS

In this section we set out to invistigate SK’s claim that
the message communication overhead is greatly reduced by
their method in case of localized communication. The message
overhead is in terms of the updates mostly which are depen-
dent on three factors. 1. The size of the computation M, i.e.
the number of messages in the computation. The more the size
of the computation more will be the total updates generated by
a single run of SK’s algorithm. 2. The number of processes N
in the system. As the number of processes would increase so
would the communication and consequently the total number
of updates. 3. Thirdly the most important factor which should
affect the effeciency is the localization rule.

In our experiments, we stongly control the number of
processes which are allowed to communicated between each
other by a rule called as the localization rule. Generally it
is a function of N, so that a subset of localized processes
can be generated. We expirement with two localization rules,
n=N/10 and n=N/2. In the runs for the algorithm, we measure
the average number of updates generated for that run for
particular values of M and N. We then vary the values for
N and M to observe the change in the behavior of the graph
measuring the average number of updates. These measure for
both rules is compared with measuements for non-localized
communication. By non-localized communication we mean
that all the processes are allowed to exachange message with
any other process.

The design of the computation is completely random where
in the sender and receiver of each message is randomly
generate using a pseudo random number generator using a
uniform distribution and seeded with the system clock time.
We increase the messages in the queue to see what effect it
has on the number of updates.

A. Localization rules

According to SK’s calculation for effeciency of technique,
if N=20; b=4 and log2 N = 5 then by eq.2 n <20.4/(5+4)≈8.
This means that if there are 20 processes in the system and

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  50  100  150  200  250  300

N
um

be
r 

of
 u

pd
at

es

Number of processes

Number of updates for N processes for M messages by localization rule N/10

L,M=10
NL,M=10
L,M=100

NL,M=100
L,M=500

NL,M=500
L,M=1000

NL,M=1000
L,M=2000

NL,M=2000

Fig. 1. ”Number of updates for N processes for M messages by localization
rule N/10”

only 8 or less are exchanging messages then their technique
will be effective.

Therefore we choose the rules such that we get two values
of n by rule 1 and 2. By rule 1 we get n=2 and by rule 2 we
get n=10. Thus we know that for rule 1, SK technique should
be more efficient than for rule 2.

We also know that, since the maximum number of updates
any message can contain is N (in case of non-localized
communication), the increase or decrease in the number of
updates will be linear in nature.

IV. OBSERVATION AND INFERENCE

A. Algorithm performance for rule1 n=N/10

In figure 1 we plot the number of updates versus the
number of processors in the system. The number of processors
involved in localized communication are calculated by the rule
n=N/10 and are denoted by L. For non localized communica-
tion (NL) any processes is allowed to communicate with any
other process. We compare the average number of updates
generated for L vs. NL. Each data point in the graph is a
result of average of 50 runs. The runs could be varied to get
a finer average value. The number of messages in the queue
is also kept on increasing with the total number of processes
in the system.

From the graph we observe that for every line in the graph,
as N goes on increasing the number of updates “U” go on
decreasing. The line starts to flatten out in the end indicating
less decrease in U for higher values of N. However this phe-
nomenon is strinking in contrast to an intuitive understanding
of SK’s technique. According to SK until “n” is kept less
than a certain amount the algorithm does perform effeciently.
However as N increases, so does n because of the rule 1.
As n increases, more processes part take in the localized
communication theoritically increasing the number of updates.
However this is not the observed case. It can be seen from
the graph behaviour that for L as well as NL, the number of
updates go on decreasing as N increases.



A possible explanation for this phenomenon is that, because
the computations are random, as the number of processes N
increases, so does the set L, thereby decreasing the probability
of same processes being picked for communication even in
set L. Say N=100, so we have n=100/10=10 by the local-
ization rule. Thus we have [L]=10 processes taking part in
the communication. The maximum number of updates which
can be contained in a message in this case is 10. However
this happens only when a single process receives a message
from all the rest of the process after their clock values have
changed. To understand this we need to understand what
happens at a process for different events,

1) Receive: a process when receives a message, goes
through the updates and then if there is any update from
the sending process to it only then does it update the
clock of the sending process in its own vector

2) Send: a process while sending updates, compares its
current vector with the previous vector, if there is a
change in the values then adds the updated value along
with the process id to an ”updates” array. So if its own
value has changed, the updates will contain the updated
value. Each process tell other process only about its own
clock value.

3) Local: a process simply increases its clock count by d.
So now we know that, to have 10 updates in the message,
a process should first receive updated values from the other
9 processes, then update its own clock value and then send
the message out to any other process with the 10 updates.
However the probability of this happening decreases as N,
and consequently n, goes on increasing! Thus as N increases,
the probability of a computation containing states which
computation in the desired result goes on decreasing too. The
number of updates decrease as a consequence as shown in Fig.
1.

Another observation is that for localized L or non localized
NL, as the number of messages increases, so do the updates,
keeping the number of processes N constant, which is accord-
ing to expectation. It is also observed for constant M, there
is a greater difference between L and NL. However this gap
narrows down as N is increased. This happens because after a
certain value of N, the probability of a computation resulting
in the increase of average updates is so less that the average of
updates generated are more or less the same! We experimented
with 300 processes, but it wouldn’t be surprising to see the
same behaviour for an even larger number of processes.

B. Algorithm performance for rule1 n=N/2

Even for this rule the graph follows similar characteristics
as the previous graph. As explained in the previous section,
the number of processes in the system, and consequently in
localized communication, have no bearing on the number of
updates generated, but rather the computation design does.
We follow a random approach to computation design and
therefore on an average the updates actually go on decreasing
becuase of the decreased probability of having a “illustrative”
computation with increase in n. In this rule, we select N/2 i.e.

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200  250  300

N
um

be
r 

of
 u

pd
at

es

Number of processes

Number of updates for N processes for M messages by localization rule N/2

L,M=10
NL,M=10
L,M=100

NL,M=100
L,M=500

NL,M=500
L,M=1000

NL,M=1000
L,M=2000

NL,M=2000

Fig. 2. ”Number of updates for N processes for M messages by localization
rule N/2”

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  50  100  150  200  250  300

N
um

be
r 

of
 u

pd
at

es

Number of processes

Number of updates for N processes for M messages for localization rule N/10 vs. N/2

N/10,M=10
N/2,M=10

N/10,M=100
N/2,M=100

N/10,M=500
N/2,M=500

N/10,M=1000
N/2,M=1000

N/10,M=2000
N/2,M=2000

Fig. 3. ”Number of updates for N processes for M messages by localization
rule N/10 versus N/2”

half of the processes for localized communication. Therefore
the average updates generated for this rule start at even lower
values than the first rule. Remaining behaviour for this rule is
pretty much the same as before.

C. Performance for rule1 vs. rule 2

In this analysis we compare the performance of the two
rules tested. Quite expectedly number of updates are more for
rule N/10 rather than for rule N/2 because of the above state
hypothesis.
From the results presented above it is obvious that SK have
a very strict definition of “localized” which is not clearly
stated. It seems like even for the localization rules stated
above, SK technique is not proved efficient, unless a certain
chronology of events is followed, implying a stricter control
on the communication. SK technique is definitely better than
sending n2 updates in every single message. However it is
not just the localization of processes which works in the
techniques favour, there is also an choronology in the events
which is needed. This chronology should be defined more



formally.

V. CONCLUSION AND FUTURE WORK

We tested SK vector clock implementation using a simulated
distributed environment with varying number of processes and
size of message queues. As a quantitative test parameter we
averaged the total number of updates any run of a random
computation would result in. Contrary to inuitive expectations
we found that the updates went on decreasing as the number of
processes and size of queues went on increasing. However we
later figured out that becuase the computations were randomly
generated, for any localization rule, as N increased so did
the “randomness” of the computation thus resulting in a
computation contrary to one which may have been able to
justify SK technique.

To truly test the effeciency of SK implementation of vector
clocks, we need to design a very controlled environment,
where in the number of process and messages in the com-
putation can be varied however the actual progression of a
computation should be stricly controlled. Once we know that
we can conclusively test SK’s hypothesis. As future work
I plan to test different types of computations on specific
topologies. Star topology seems to be ideal where a single
process actively receives updates from other processes, hence
providing a test bed for our propositions.

ACKNOWLEDGMENT

I would like to thank Dr.Nesterenko for this wonderful
course.

REFERENCES

[1] Leslie Lamport (1978). ”Time, clocks, and the ordering of events in a
distributed system”. Communications of the ACM 21 (7): 558-565.

[2] Mukesh Singhal, Ajay D. Kshemkalyani: An Efficient Implementation of
Vector Clocks. Inf. Process. Lett. 43(1): 47-52 (1992)

[3] ”Distributed Computing: Principles, Algorithms and Systems”
Kshemkalyani and Singhal.


